Cargando…

Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications /

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used ins...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Podlubny, Igor
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Academic Press, �1999.
Colección:Mathematics in science and engineering ; v. 198.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162132135
003 OCoLC
005 20231117014908.0
006 m o d
007 cr cn|||||||||
008 070802s1999 caua ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d SHH  |d IDEBK  |d OCLCQ  |d OPELS  |d OCLCQ  |d TEF  |d N$T  |d YDXCP  |d E7B  |d FHM  |d OSU  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d AGLDB  |d PHUST  |d UUM  |d STF  |d D6H  |d OCLCQ  |d VTS  |d OCLCQ  |d LEAUB  |d M8D  |d BWN  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d DST  |d OCLCQ 
015 |a GB9918346  |2 bnb 
019 |a 232605373  |a 643580986  |a 646740818  |a 706495071  |a 779919311  |a 989201412  |a 1035705845  |a 1110352516  |a 1162219628  |a 1241749828  |a 1300455772 
020 |a 9780080531984  |q (electronic bk.) 
020 |a 0080531989  |q (electronic bk.) 
020 |a 0125588402 
020 |a 9780125588409 
020 |a 1281279498 
020 |a 9781281279491 
020 |a 9786611279493 
020 |a 6611279490 
020 |z 9780125588409 
035 |a (OCoLC)162132135  |z (OCoLC)232605373  |z (OCoLC)643580986  |z (OCoLC)646740818  |z (OCoLC)706495071  |z (OCoLC)779919311  |z (OCoLC)989201412  |z (OCoLC)1035705845  |z (OCoLC)1110352516  |z (OCoLC)1162219628  |z (OCoLC)1241749828  |z (OCoLC)1300455772 
050 4 |a QA372  |b .P53 1999eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
084 |a 31.40  |2 bcl 
100 1 |a Podlubny, Igor. 
245 1 0 |a Fractional differential equations :  |b an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications /  |c by Igor Podlubny. 
260 |a San Diego :  |b Academic Press,  |c �1999. 
300 |a 1 online resource (xxiv, 340 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering ;  |v v. 198 
504 |a Includes bibliographical references (pages 313-335) and index. 
520 |a This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. Key Features * A unique survey of many applications of fractional calculus * Presents basic theory * Includes a unified presentation of selected classical results, which are important for applications * Provides many examples * Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory * The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches * Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives. 
505 0 |a Preface. Acknowledgments. Special Functions Of Preface. Acknowledgements. Special Functions of the Fractional Calculus. Gamma Function. Mittag-Leffler Function. Wright Function. Fractional Derivatives and Integrals. The Name of the Game. Gr�unwald-Letnikov Fractional Derivatives. Riemann-Liouville Fractional Derivatives. Some Other Approaches. Sequential Fractional Derivatives. Left and Right Fractional Derivatives. Properties of Fractional Derivatives. Laplace Transforms of Fractional Derivatives. Fourier Transforms of Fractional Derivatives. Mellin Transforms of Fractional Derivatives. Existence and Uniqueness Theorems. Linear Fractional Differential Equations. Fractional Differential Equation of a General Form. Existence and Uniqueness Theorem as a Method of Solution. Dependence of a Solution on Initial Conditions. The Laplace Transform Method. Standard Fractional Differential Equations. Sequential Fractional Differential Equations. Fractional Green's Function. Definition and Some Properties. One-Term Equation. Two-Term Equation. Three-Term Equation. Four-Term Equation. Calculation of Heat Load Intensity Change in Blast Furnace Walls. Finite-Part Integrals and Fractional Derivatives. General Case: n-term Equation. Other Methods for the Solution of Fractional-order Equations. The Mellin Transform Method. Power Series Method. Babenko's Symbolic Calculus Method. Method of Orthogonal Polynomials. Numerical Evaluation of Fractional Derivatives. Approximation of Fractional Derivatives. The "Short-Memory" Principle. Order of Approximation. Computation of Coefficients. Higher-order Approximations. Numerical Solution of Fractional Differential Equations. Initial Conditions: Which Problem to Solve? Numerical Solution. Examples of Numerical Solutions. The "Short-Memory" Principle in Initial Value Problems for Fractional Differential Equations. Fractional-Order Systems and Controllers. Fractional-Order Systems and Fractional-Order Controllers. Example. On Viscoelasticity. Bode's Analysis of Feedback Amplifiers. Fractional Capacitor Theory. Electrical Circuits. Electroanalytical Chemistry. Electrode-Electrolyte Interface. Fractional Multipoles. Biology. Fractional Diffusion Equations. Control Theory. Fitting of Experimental Data. The "Fractional-Order" Physics? Bibliography. Tables of Fractional Derivatives. Index. 
546 |a English. 
650 0 |a Differential equations  |x Numerical solutions. 
650 0 |a Fractional calculus. 
650 0 |a Differential equations. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations.  |2 fast  |0 (OCoLC)fst00893446 
650 7 |a Differential equations  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893451 
650 7 |a Fractional calculus.  |2 fast  |0 (OCoLC)fst00933515 
650 1 7 |a Differentiaalvergelijkingen.  |2 gtt 
776 0 8 |i Print version:  |a Podlubny, Ogor.  |t Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.  |d San Diego : Academic Press, 1999  |z 0125588402  |z 9780125588409  |w (DLC) 2008297489  |w (OCoLC)40225390 
830 0 |a Mathematics in science and engineering ;  |v v. 198. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780125588409  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=00765392&volume=198  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00765392/198  |z Texto completo