Cargando…

Fractal dimensions for Poincar�e recurrences /

This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Afra�imovich, V. S. (Valentin Senderovich)
Otros Autores: Ugalde, E. (Edgardo), Ur�ias, J. (Jes�us)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; London : Elsevier, 2006.
Colección:Monograph series on nonlinear science and complexity ; v. 2.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131367
003 OCoLC
005 20231117014900.0
006 m o d
007 cr cn|||||||||
008 070802s2006 ne a ob 001 0 eng d
010 |z  01326096  
040 |a OPELS  |b eng  |e pn  |c OPELS  |d BAKER  |d OCLCG  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d ZCU  |d E7B  |d IDEBK  |d OCLCQ  |d OPELS  |d OCLCO  |d OCLCF  |d UKMGB  |d DEBSZ  |d OCLCQ  |d EBLCP  |d NRU  |d UKDOC  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d OCLCQ  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK 
015 |a GBA631548  |2 bnb 
016 7 |a 013426096  |2 Uk 
019 |a 77481806  |a 441765900  |a 476003708  |a 507140616  |a 647547426  |a 823857293  |a 823927390  |a 824117001  |a 824168779  |a 1162394289  |a 1241827526  |a 1259138228 
020 |a 9780444521897 
020 |a 0444521895 
020 |a 0080462391  |q (electronic bk.) 
020 |a 9780080462394  |q (electronic bk.) 
020 |a 1280641851 
020 |a 9781280641855 
020 |a 9786610641857 
020 |a 6610641854 
035 |a (OCoLC)162131367  |z (OCoLC)77481806  |z (OCoLC)441765900  |z (OCoLC)476003708  |z (OCoLC)507140616  |z (OCoLC)647547426  |z (OCoLC)823857293  |z (OCoLC)823927390  |z (OCoLC)824117001  |z (OCoLC)824168779  |z (OCoLC)1162394289  |z (OCoLC)1241827526  |z (OCoLC)1259138228 
050 4 |a QA614.86  |b .A45 2006eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514.742  |2 22 
100 1 |a Afra�imovich, V. S.  |q (Valentin Senderovich) 
245 1 0 |a Fractal dimensions for Poincar�e recurrences /  |c V. Afraimovich, E. Ugalde and J. Ur�ias. 
260 |a Amsterdam ;  |a London :  |b Elsevier,  |c 2006. 
300 |a 1 online resource (xi, 245 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Monograph series on nonlinear science and complexity,  |x 1574-6917 ;  |v v. 2 
520 |a This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory 
505 0 |a 1. Introduction -- -- Part 1: Fundamentals -- -- 2. Symbolic Systems -- 3. Geometric Constructions -- 4. Spectrum of Dimensions for Recurrences -- -- Part II: Zero-Dimensional Invariant Sets -- -- 5. Uniformly Hyperbolic Repellers -- 6. Non-Uniformly Hyperbolic Repellers -- 7. The Spectrum for a Sticky Set -- 8. Rhythmical Dynamics -- -- Part III: One-Dimensional Systems -- -- 9. Markov Maps of the Interval -- 10. Suspended Flows -- -- Part IV: Measure Theoretical Results -- -- 11. Invariant Measures -- 12. Dimensional for Measures -- 13. The Variational Principle -- -- Part V: Physical Interpretation and Applications -- -- 14. Intuitive Explanation -- 15. Hamiltonian Systems -- 16. Chaos Synchronization -- -- Part VI: Appendices -- -- 17. Some Known Facts About Recurrences -- 18. Birkhoff's Individual Theorem -- 19. The SMB Theorem -- 20. Amalgamation and Fragmentation -- -- Index. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Fractals. 
650 0 |a Poincar�e series. 
650 6 |a Fractales.  |0 (CaQQLa)201-0134451 
650 6 |a S�eries de Poincar�e.  |0 (CaQQLa)201-0030017 
650 7 |a fractals.  |2 aat  |0 (CStmoGRI)aat300073497 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Fractals.  |2 fast  |0 (OCoLC)fst00933507 
650 7 |a Poincar�e series.  |2 fast  |0 (OCoLC)fst01068096 
700 1 |a Ugalde, E.  |q (Edgardo) 
700 1 |a Ur�ias, J.  |q (Jes�us) 
776 0 8 |i Print version:  |a Afra�imovich, V.S. (Valentin Senderovich).  |t Fractal dimensions for Poincar�e recurrences.  |d Amsterdam ; London : Elsevier, 2006  |z 0444521895  |z 9780444521897  |w (OCoLC)64959093 
830 0 |a Monograph series on nonlinear science and complexity ;  |v v. 2.  |x 1574-6917 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444521897  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=15746917&volume=2  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/15746917/2  |z Texto completo