Cargando…

Handbook of algebra /

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hazewinkel, Michiel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : Elsevier, 1996-<2009>
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131308
003 OCoLC
005 20231117014858.0
006 m o d
007 cr cn|||||||||
008 070802m19969999ne a obf 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d OCLCF  |d DEBBG  |d UIU  |d YDXCP  |d OCLCQ  |d UIU  |d DEBSZ  |d LEAUB  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9780444822123 
020 |z 0444822127 
035 |a (OCoLC)162131308 
050 4 |a QA155.2  |b .H36 1996eb 
082 0 4 |a 512  |2 22 
245 0 0 |a Handbook of algebra /  |c edited by M. Hazewinkel. 
246 3 0 |a Algebra 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 1996-<2009> 
300 |a 1 online resource (volumes <1-3>) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface. Section 1A. Linear Algebra. Van der Waerden conjecture and applications (G.P. Egorychev). Random matrices (V.L. Girko). Matrix equations. Factorization of matrix polynomials (A.N. Malyshev). Matrix functions (L. Rodman). Section 1B. Linear (In)dependence. Matroids (J.P.S. Kung). Section 1D. Fields, Galois Theory, and Algebraic Number Theory. Higher derivation Galois theory of inseparable field extensions (J.K. Deveney, J.N. Mordeson). Theory of local fields. Local class field theory. Higher local class field theory (I.B. Fesenko). Infinite Galois theory (M. Jarden). Finite fields and their applications (R. Lidl, H. Niederreiter). Global class field theory (W. Narkiewicz). Finite fields and error correcting codes (H. van Tilborg). Section 1F. Generalizations of Fields and Related Objects. Semi-rings and semi-fields (U. Hebisch, H.J. Weinert). Near-rings and near-fields (G.F. Pilz). Section 2A. Category Theory. Topos theory (S. MacLane, I. Moerdijk). Categorical structures (R.H. Street). Section 2B. Homological Algebra. Cohomology. Cohomological Methods in Algebra. Homotopical Algebra. The cohomology of groups (J.F. Carlson). Relative homological algebra. Cohomology of categories, posets, and coalgebras (A.I. Generalov). Homotopy and homotopical algebra (J.F. Jardine). Derived categories and their uses (B. Keller). Section 3A. Commutative Rings and Algebras. Ideals and modules (J.-P. Lafon). Section 3B. Associative Rings and Algebras. Polynomial and power series rings. Free algebras, firs and semifirs (P.M. Cohn). Simple, prime, and semi-prime rings (V.K. Kharchenko). Algebraic microlocalization and modules with regular singularities over filtered rings (A.R.P. van den Essen). Frobenius rings (K. Yamagata). Subject Index. 
500 |a Vol. 2: 1st ed. 
504 |a Includes bibliographical references and indexes. 
505 0 |a v. 1. Linear algebra, fields, algebraic number theory. 
588 0 |a Print version record. 
520 |a Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. 
650 0 |a Algebra. 
650 6 |a Alg&#xFFFD;ebre.  |0 (CaQQLa)201-0001155 
650 7 |a algebra.  |2 aat  |0 (CStmoGRI)aat300054523 
650 7 |a Algebra  |2 fast  |0 (OCoLC)fst00804885 
650 1 7 |a Algebra.  |2 gtt 
655 7 |a Periodicals  |2 fast  |0 (OCoLC)fst01411641 
700 1 |a Hazewinkel, Michiel. 
776 0 8 |i Print version:  |t Handbook of algebra.  |d Amsterdam ; New York : Elsevier, 1996-<2009>  |w (DLC) 95039024  |w (OCoLC)33207010 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/15707954/  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/15707954/1  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444822123  |z Texto completo