Cargando…

Power geometry in algebraic and differential equations /

The geometry of power exponents includes the Newton polyhedron, normal cones of its faces, power and logarithmic transformations. On the basis of the geometry universal algorithms for simplifications of systems of nonlinear equations (algebraic, ordinary differential and partial differential) were d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Br�i�uno, Aleksandr Dmitrievich
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Amsterdam ; New York : Elsevier, 2000.
Edición:1st ed.
Colección:North-Holland mathematical library ; v. 57.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131188
003 OCoLC
005 20231117014855.0
006 m o d
007 cr cn|||||||||
008 070802s2000 ne a ob 001 0 eng d
010 |z  00041723  
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d BTCTA  |d MERUC  |d E7B  |d IDEBK  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d EBLCP  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d STF  |d D6H  |d NLE  |d OCLCQ  |d LEAUB  |d OL$  |d BWN  |d OCLCQ  |d VLY  |d LUN  |d S2H  |d OCLCO  |d EUN  |d EUX  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d QGK  |d OCLCO 
066 |c (S 
015 |a GBA058550  |2 bnb 
015 |a GBA0-58550 
019 |a 173240332  |a 174043557  |a 179791140  |a 441797742  |a 648325399  |a 779920254  |a 989246126  |a 1035655526  |a 1110293220  |a 1162106298  |a 1241938960  |a 1259230168 
020 |a 9780444502971 
020 |a 0444502971 
020 |a 9780080539331  |q (electronic bk.) 
020 |a 0080539335  |q (electronic bk.) 
020 |a 1281038725 
020 |a 9781281038722 
020 |a 9786611038724 
020 |a 6611038728 
035 |a (OCoLC)162131188  |z (OCoLC)173240332  |z (OCoLC)174043557  |z (OCoLC)179791140  |z (OCoLC)441797742  |z (OCoLC)648325399  |z (OCoLC)779920254  |z (OCoLC)989246126  |z (OCoLC)1035655526  |z (OCoLC)1110293220  |z (OCoLC)1162106298  |z (OCoLC)1241938960  |z (OCoLC)1259230168 
041 1 |a eng  |h rus 
050 4 |a QA474  |b .B7513 2000eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.22  |2 22 
100 1 |a Br�i�uno, Aleksandr Dmitrievich. 
240 1 0 |a Stepenna�i�a geometri�i�a v algebraicheskikh i differen�t�sial�nykh uravneni�i�akh.  |l English 
245 1 0 |a Power geometry in algebraic and differential equations /  |c Alexander D. Bruno. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 2000. 
300 |a 1 online resource (ix, 385 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematical library ;  |v v. 57 
520 |a The geometry of power exponents includes the Newton polyhedron, normal cones of its faces, power and logarithmic transformations. On the basis of the geometry universal algorithms for simplifications of systems of nonlinear equations (algebraic, ordinary differential and partial differential) were developed. The algorithms form a new calculus which allows to make local and asymptotical analysis of solutions to those systems. The efficiency of the calculus is demonstrated with regard to several complicated problems from Robotics, Celestial Mechanics, Hydrodynamics and Thermodynamics. The calculus also gives classical results obtained earlier intuitively and is an alternative to Algebraic Geometry, Differential Algebra, Lie group Analysis and Nonstandard Analysis. 
505 0 |a Preface. Introduction. The linear inequalitites. Singularities of algebraic equations. Hamiltonian truncations. Local analysis of an ODE system. Systems of arbitrary equations. Self-similar solutions. On complexity of problems of Power Geometry. Bibliography. Subject index. 
504 |a Includes bibliographical references (pages 359-381) and index. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Geometry, Plane. 
650 0 |a Differential-algebraic equations. 
650 6 |a G�eom�etrie plane.  |0 (CaQQLa)201-0005153 
650 6 |a �Equations diff�erentielles alg�ebriques.  |0 (CaQQLa)201-0203503 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Differential-algebraic equations  |2 fast  |0 (OCoLC)fst00893501 
650 7 |a Geometry, Plane  |2 fast  |0 (OCoLC)fst00940930 
776 0 8 |i Print version:  |a Br�i�uno, Aleksandr Dmitrievich.  |s Stepenna�i�a geometri�i�a v algebraicheskikh i differen�t�sial�nykh uravneni�i�akh. English.  |t Power geometry in algebraic and differential equations.  |b 1st ed.  |d Amsterdam ; New York : Elsevier, 2000  |z 0444502971  |z 9780444502971  |w (DLC) 00041723  |w (OCoLC)45029927 
830 0 |a North-Holland mathematical library ;  |v v. 57. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444502971  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=09246509&volume=57  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09246509/57  |z Texto completo 
880 8 |6 505-00/(S  |a 4. Truncated systems5. The power asymptotics; 6. Logarithmic asymptotics; 7. The simplex systems; 8. A big example; 9. Remarks; Chapter 4. Hamiltonian truncations; 1. The theory; 2. The generalized Henon-Heiles system; 3. The Sokol'skii cases of zero frequencies; 4. The restricted three-body problem; Chapter 5. Local analysis of an ODE system; 1. Introduction; 2. Normal form of a linear system; 3. The Newton polyhedron; 4. The reduction of System (3.10); 5. The classification of System (4.2); 6. The normal form of a nonlinear system; 7. Cases I and γ1; 8. System (4.2) in Cases II and IV 
880 8 |6 505-00/(S  |a 9. The non-resonant case III10. The normal form in the resonant Case III; 11. The resonances of higher order; 12. The resonance 1:3 in Case III; 13. The resonance 1:2 in Case III; 14. The normal form in Case γ2; 15. The normal form in Cases γ0 and γ3; 16. The review of the results for System (4.2); 17. The transference of results to the original system; 18. The comparison with the Hamiltonian normal form; 19. The case μ=0; 20. The Belitskii normal form; 21. The problem of surface waves; 22. On the supernormal form; Chapter 6. Systems of arbitrary equations; 1. Truncated systems