Cargando…

Poroelastic structures /

Poroelasticity is a continuum theory for the analysis of a porous media consisting of an elastic matrix containing interconnected fluid-saturated pores. In physical terms the theory postulates that when a porous material is subjected to stress, the resulting matrix deformation leads to volumetric ch...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cederbaum, Gabriel
Otros Autores: Li, Leping, Schulgasser, Kalman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York ; Oxford : Elsevier, 2000.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131185
003 OCoLC
005 20231117014855.0
006 m o d
007 cr cn|||||||||
008 070802s2000 ne a ob 001 0 eng d
010 |z  2001276247 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d MERUC  |d ZCU  |d OCLCE  |d E7B  |d OCLCQ  |d STF  |d OCLCQ  |d OCLCA  |d S2H  |d OCLCO  |d OCLCQ  |d UKBTH  |d COM  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
015 |a GBA0-52388 
019 |a 173240329  |a 174036261  |a 507457948  |a 606438862  |a 648325286  |a 1035697327  |a 1159623005  |a 1392331084 
020 |a 9780080436685 
020 |a 0080436684 
020 |a 9780080539270 
020 |a 0080539270 
020 |a 1281038040 
020 |a 9781281038043 
020 |a 9786611038045 
020 |a 6611038043 
035 |a (OCoLC)162131185  |z (OCoLC)173240329  |z (OCoLC)174036261  |z (OCoLC)507457948  |z (OCoLC)606438862  |z (OCoLC)648325286  |z (OCoLC)1035697327  |z (OCoLC)1159623005  |z (OCoLC)1392331084 
042 |a dlr 
050 4 |a TA418.9.P6  |b C43 2000eb 
072 7 |a TA  |2 lcco 
072 7 |a TEC  |x 021000  |2 bisacsh 
082 0 4 |a 620.1/16  |2 22 
100 1 |a Cederbaum, Gabriel. 
245 1 0 |a Poroelastic structures /  |c Gabriel Cederbaum, LePing Li, Kalman Schulgasser. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York ;  |a Oxford :  |b Elsevier,  |c 2000. 
300 |a 1 online resource (viii, 158 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Poroelasticity is a continuum theory for the analysis of a porous media consisting of an elastic matrix containing interconnected fluid-saturated pores. In physical terms the theory postulates that when a porous material is subjected to stress, the resulting matrix deformation leads to volumetric changes in the pores. This book is devoted to the analysis of fluid-saturated poroelastic beams, columns and plates made of materials for which diffusion in the longitudinal direction(s) is viable, while in the perpendicular direction(s) the flow can be considered negligible because of the micro-geometry of the solid skeletal material. Many microstructures and fabrication schemes could be imagined, which would produce bulk materials with the postulated behavior. The book provides a methodology and a theoretical basis for investigating the mechanical behaviors of the structural elements made of such materials. It is recognized that the response of the poroelastic structural element to loading is sensitive to the properties of the fluid and to the diffusion boundaries, which can be easily altered in practice. Therefore, such structural elements and thus their features are potentially <IT>controllable</IT>. In other words, it could be possible to convert such elements into <IT>intelligent</IT> or <IT>smart structures</IT>. If this is so, it would be interesting that such structural elements could work as both sensors and actuators, e.g. the fluid can "feel" the change of the temperature by changing its viscosity and this results in a change of the behavior of the structure. The present book is the first of its kind; there does not exist in the professional literature any book which deals with this subject. Chapter 1 is a general introduction and overview. The governing equations for beams are presented in Chapter 2. Chapter 3 then presents analytical solutions for the quasi-static bending problem. Series solutions are found for normal loading with various mechanical and diffusion boundary conditions. The finite element method is developed and employed for the quasi-static beams and columns with small deflections in Chapter 4. In Chapter 5 solutions are found for free and forced vibrations of poroelastic beams. Chapter 6 deals with large deflections of beams. The stability of poroelastic columns is investigated in Chapter 7. Three problems are considered: buckling, post-buckling, and dynamic stability. Formulations are found in Chapter 8 for fluid-saturated poroelastic plates consisting of a material, for which the diffusion is possible in the in-plane directions only, both for bending and for in-plane loading. This book attempts to constitute a reasonably self-contained presentation of a wide spectrum of problems related to the analysis of the type of poroelastic structure considered 
505 0 |a Introduction. Modeling of Poroelastic Beams. Basic equations. Characteristic times. Note on a beam impermeable at both ends. Equations in non-dimensional form. Analytical Solutions for Quasi-Static Beams. Simply-supported beams with permeable ends. Beams subjected to loads suddenly applied and constant thereafter. Finite Element Formulation and Solutions for Quasi-Static Beams. Introduction. Variational principles. Finite element formulation. Examples and discussion. Vibrations of Poroelastic Beams. Initial value problems. Forced harmonic vibrations. Closure. Large Deflection Analysis of Poroelastic Beams. Governing equations. Equations in non-dimensional forms when & egr;<INF>0</INF> =0. Numerical formulation. Numerical procedure for the finite difference method. Examples and discussion. Stability of Poroelastic Columns. Buckling of columns. Limits of critical load. Time-dependence of critical load and deflections. Post-buckling: formulation. Post-buckling: results and discussion. Imperfection sensitivity. Dynamic stability of poroelastic columns. Stability boundaries and critical load amplitude. Analysis of Poroelastic Plates. Basic equations for thin plates. Analytical solutions for quasi-static bending. Transverse vibrations of simply supported plates. Closure. Appendices. Subject index. 
504 |a Includes bibliographical references (pages 141-144) and index. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
546 |a English. 
650 0 |a Porous materials. 
650 0 |a Elasticity. 
650 2 |a Elasticity  |0 (DNLM)D004548 
650 6 |a &#xFFFD;Elasticit&#xFFFD;e.  |0 (CaQQLa)201-0024289 
650 7 |a TECHNOLOGY & ENGINEERING  |x Material Science.  |2 bisacsh 
650 7 |a Elasticity  |2 fast  |0 (OCoLC)fst00904211 
650 7 |a Porous materials  |2 fast  |0 (OCoLC)fst01071907 
700 1 |a Li, Leping. 
700 1 |a Schulgasser, Kalman. 
776 0 8 |i Print version:  |a Cederbaum, Gabriel.  |t Poroelastic structures.  |b 1st ed.  |d Amsterdam ; New York ; Oxford : Elsevier, 2000  |z 0080436684  |z 9780080436685  |w (DLC) 2001276247  |w (OCoLC)44786985 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080436685  |z Texto completo