Cargando…

Molecular mechanisms in visual transduction /

Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: DeGrip, W. J., Pugh, E. N. (Edward N.), Stavenga, D. G. (Doekele Gerben), 1942-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : Elsevier, 2000.
Edición:1st ed.
Colección:Handbook of biological physics ; v. 3.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131149
003 OCoLC
005 20231117014853.0
006 m o d
007 cr cn|||||||||
008 070802s2000 ne a ob 001 0 eng d
010 |z  2001274678 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d E7B  |d OCLCQ  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCQ  |d DEBSZ  |d UAB  |d OCLCQ  |d CASUM  |d OCLCO  |d OCLCA  |d OCLCF  |d STF  |d D6H  |d OCLCO  |d CHVBK  |d OCLCO  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCA  |d LEAUB  |d OCLCO  |d OL$  |d OCLCQ  |d WURST  |d OCLCA  |d VLY  |d LUN  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCL  |d OCLCQ  |d QGK  |d OCLCO 
015 |a GBA103950  |2 bnb 
015 |a GBA1-03950 
019 |a 182621890  |a 648331080  |a 779916903  |a 1011166532  |a 1035657670  |a 1148600862  |a 1162096861  |a 1170279631  |a 1172973123  |a 1241778185  |a 1259140667 
020 |a 9780444501028 
020 |a 0444501029 
020 |a 9780080536774  |q (electronic bk.) 
020 |a 0080536778  |q (electronic bk.) 
020 |a 9786611071035 
020 |a 6611071032 
035 |a (OCoLC)162131149  |z (OCoLC)182621890  |z (OCoLC)648331080  |z (OCoLC)779916903  |z (OCoLC)1011166532  |z (OCoLC)1035657670  |z (OCoLC)1148600862  |z (OCoLC)1162096861  |z (OCoLC)1170279631  |z (OCoLC)1172973123  |z (OCoLC)1241778185  |z (OCoLC)1259140667 
050 4 |a QP671.V5  |b M65 2000eb 
060 4 |a 2002 D-361 
060 4 |a QH 601  |b M71994 2000 
070 |a QH505  |b .H36 v. 3 
072 7 |a QH  |2 lcco 
072 7 |a SOC  |x 002020  |2 bisacsh 
082 0 4 |a 573.8/8  |2 22 
084 |a KK 38  |2 blsrissc 
245 0 0 |a Molecular mechanisms in visual transduction /  |c editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 2000. 
300 |a 1 online resource (xiv, 581 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Handbook of biological physics,  |x 1383-8121 ;  |v v. 3 
520 |a Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are first to determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells. Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin. As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must be explained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced. The various molecular mechanisms participating in inactivation are treated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to. 
504 |a Includes bibliographical references and index. 
505 0 |a Structure and mechanism of vertebrate visual pigments / W.J. DeGrip and K.J. Rothschild -- The primary photoreaction of rhodopsin / R.A. Mathies and J. Lugtenburg -- Late photoproducts and signaling states of bovine rhodopsin / K.P. Hofmann -- Ion channels of vertebrate photoreceptors / R.S. Molday and U.B. Kaupp -- Phototransduction in vertebrate rods and cones : molecular mechanisms of amplification, recovery and light adaptation / E.N. Pugh Jr and T.D. Lamb -- Comparative molecular biology of visual pigments / S. Yokoyama and R. Yokoyama -- Invertebrate visual pigments / W. G�artner -- Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates / E. Nasi, M. del Pilar Gomez and R. Payne -- Genetic dissection of Drosophila phototransduction / B. Minke and R.C. Hardie -- Modeling primary visual processes in insect photoreceptors / D.G. Stavenga, J. Oberwinkler and M. Postma. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Visual pigments  |x Mechanism of action. 
650 0 |a Cellular control mechanisms. 
650 0 |a Cellular signal transduction. 
650 0 |a Visual pigments. 
650 1 2 |a Signal Transduction  |0 (DNLM)D015398 
650 2 2 |a Photoreceptors 
650 2 2 |a Light Signal Transduction  |0 (DNLM)D055537 
650 6 |a Pigments visuels.  |0 (CaQQLa)201-0059907 
650 6 |a R�egulation cellulaire.  |0 (CaQQLa)201-0005048 
650 6 |a Transduction du signal cellulaire.  |0 (CaQQLa)201-0206812 
650 6 |a Pigments visuels  |0 (CaQQLa)201-0059907  |x M�ecanisme d'action.  |0 (CaQQLa)201-0375393 
650 7 |a SOCIAL SCIENCE  |x Anthropology  |x Physical.  |2 bisacsh 
650 7 |a Visual pigments  |2 fast  |0 (OCoLC)fst01168078 
650 7 |a Cellular control mechanisms  |2 fast  |0 (OCoLC)fst00850278 
650 7 |a Cellular signal transduction  |2 fast  |0 (OCoLC)fst00850288 
653 0 0 |a gezichtspigmenten 
653 0 0 |a visual pigments 
653 0 0 |a rhodopsine 
653 0 0 |a rhodopsin 
653 0 0 |a fotochemie 
653 0 0 |a photochemistry 
653 1 0 |a Photochemistry and Photophysics 
653 1 0 |a Fotochemie en fotofysica 
700 1 |a DeGrip, W. J. 
700 1 |a Pugh, E. N.  |q (Edward N.) 
700 1 |a Stavenga, D. G.  |q (Doekele Gerben),  |d 1942- 
776 0 8 |i Print version:  |t Molecular mechanisms in visual transduction.  |b 1st ed.  |d Amsterdam ; New York : Elsevier, 2000  |z 0444501029  |z 9780444501028  |w (DLC) 2001274678  |w (OCoLC)45736412 
830 0 |a Handbook of biological physics ;  |v v. 3.  |x 1383-8121 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444501028  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=13838121&volume=3  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/handbooks/13838121/3  |z Texto completo