Cargando…

The theory of singular perturbations /

The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of sol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jager, E. M. de (Eduardus Marie de)
Otros Autores: Furu, Jiang
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : Elsevier, 1996.
Colección:North-Holland series in applied mathematics and mechanics ; v. 42.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162131062
003 OCoLC
005 20231117014850.0
006 m o d
007 cr cn|||||||||
008 070802s1996 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d BTCTA  |d MERUC  |d E7B  |d IDEBK  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
019 |a 173807762  |a 174965100  |a 179820698  |a 441795350  |a 647654117  |a 832617887  |a 1035707131 
020 |a 9780444821706 
020 |a 0444821708 
020 |a 9780080542751  |q (electronic bk.) 
020 |a 0080542751  |q (electronic bk.) 
035 |a (OCoLC)162131062  |z (OCoLC)173807762  |z (OCoLC)174965100  |z (OCoLC)179820698  |z (OCoLC)441795350  |z (OCoLC)647654117  |z (OCoLC)832617887  |z (OCoLC)1035707131 
050 4 |a QA372  |b .J24 1996eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515/.35  |2 22 
100 1 |a Jager, E. M. de  |q (Eduardus Marie de) 
245 1 4 |a The theory of singular perturbations /  |c E.M. de Jager, Jiang Furu. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 1996. 
300 |a 1 online resource (xii, 340 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland series in applied mathematics and mechanics ;  |v v. 42 
520 |a The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and �Gding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises. 
504 |a Includes bibliographical references (pages 331-338) and index. 
505 0 |a Cover -- Contents -- Preface -- Chapter 1. General Introduction -- Chapter 2. Asymptotic Expansions -- 1 Order Symbols -- 2 Gauge Functions and Asymptotic Sequences -- Asymptotic Series -- 4 Convergence versus Asymptotic Convergence -- 5 Elementary Operations on Asymptotic Expansions -- 6 Other Types of Estimates -- 7 Generalized Asymptotic Expansions -- Exercises -- Chapter 3. Regular Perturbations -- 1 Regular Perturbations -- 2 A Nonlinear Initial Value Problem Containing a Small Parameter -- 3 Applications -- Chapter 4. The Method of the Strained Coordinate -- 1 Introduction -- 2 Applications of the Method of the Strained Coordinate -- 3 The Method of the Strained Parameter -- 4 Lighthill's Method -- 5 Temple's Method -- 6 Limitations of the Lindstedt-Poincar�e Method -- Exercises -- Chapter 5. The Method of Averaging -- 1 Introduction -- 2 The Krilov-Bogoliubov-Mitropolski Theorem -- 3 Weakly Nonlinear Free Oscillations -- 4 Weakly Forced Nonlinear Oscillations -- 5 A Linear Oscillator with Increasing Damping -- Exercises -- Chapter 6. The Method of Multiple Scales -- 1 Introduction -- 2 Weakly Nonlinear Free Oscillations -- 3 The Linear Oscillator with Damping -- 4 The Equation of Mathieu -- 5 The General Case and the Error Estimate -- 6 Averaging and Multiple Scales for Perturbed Wave Equations -- Exercises -- Chapter 7. Singular Perturbations of Linear Ordinary Differential Equations -- 1 The initial Value Problem -- 2 The Boundary Value Problem -- 3 Boundary Value Problems with Turning Points -- Exercises -- Chapter 8. Singular Perturbations of Second Order Elliptic Type. Linear Theory -- 1 Introduction -- 2 The Maximum Principle for Elliptic Operators -- 3 The Formal Approximation -- 4 Estimation of the Remainder Term and Final Results -- 5 Domains with Characteristic Boundaries -- 6 Elliptic Boundary Value Problems with Turning Points -- Exercises -- Chapter 9. Singular Perturbations of Second Order Hyperbolic Type. -- 1 Introduction -- 2 Characteristics and Subcharacteristics -- 3 The Formal Approximation -- 4 A Priori Estimates of Solutions of Initial Value Problems for Partial Differential Equations with a Singular Perturbation of Hyperbolic Type -- 5 The Estimate of the Remainder Term and Final Results -- Exercises -- Chapter 10. Singular Perturbations in Nonlinear Initial Value Problems of Second Order -- 1 Introduction -- 2 A Fixed Point Theorem -- 3 The Quasilinear Initial Value Problem -- 4 A General Nonlinear Initial Value Problem -- 5 Quasilinear Initial Value Problems with a Singular Perturbation of Second Order Hyperbolic Type -- Exercises -- Chapter 11. Singular Perturbations in Nonlinear Boundary Value Problems of Second Order -- 1 Introduction -- 2 Boundary Value Problems for Quasilinear Ordinary Differential Equations -- 3 Transition Layers -- 4 Autonomous Conservative Equations -- 5 A More General Case -- 6 Boundary Value Problems for Quasilinear Partial Differential Equations of Elliptic Type -- Exercises -- Chapter 12. Perturbations of Higher Order -- 1 Introduction -- 2 Perturbations of Higher Order in Ordinary Differential Equations -- 3 Elliptic Perturbations of Elliptic Equations -- 4 Elliptic Singular Perturbations of Higher Order -- Exercises. 
588 0 |a Print version record. 
650 0 |a Singular perturbations (Mathematics) 
650 6 |a Perturbations singuli�eres (Math�ematiques)  |0 (CaQQLa)201-0088335 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Singular perturbations (Mathematics)  |2 fast  |0 (OCoLC)fst01119500 
650 1 7 |a Differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Storingsrekening.  |2 gtt 
650 1 7 |a Singulariteiten.  |2 gtt 
650 7 |a Perturbations singuli�eres (Math�ematiques)  |2 ram 
700 1 |a Furu, Jiang. 
776 0 8 |i Print version:  |a Jager, E.M. de (Eduardus Marie de).  |t Theory of singular perturbations.  |d Amsterdam ; New York : Elsevier, 1996  |z 0444821708  |z 9780444821706  |w (DLC) 96043440  |w (OCoLC)35673470 
830 0 |a North-Holland series in applied mathematics and mechanics ;  |v v. 42. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444821706  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/01675931/42  |z Texto completo