Non-linear theory of elasticity and optimal design : how to build safe economical machines and structures : how to build proven reliable physical theory /
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier,
2003.
|
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Non-linear Theory of Elasticity and Optimal Design
- Copyright Page
- Contents
- Preface
- Introduction
- Prologue
- Part I: Principles and Methods of NLTE
- Chapter 1. Practical problems
- Chapter 2. Foundations of the non-linear theory of elasticity
- 2.1. Summary
- 2.2. Recapture
- Chapter 3. Devising the non-linear theory of elasticity
- 3.1. Summary
- Chapter 4. Principles of logic in NLTE
- Chapter 5. Method of optimal structural design
- 5.1. Summary
- 5.2. Example of beam design
- Chapter 6. Optimal structural design (examples)
- 6.1. Tension/compression and bending
- 6.2. Beams with multiple supports
- 6.3. Deformation of plates
- Chapter 7. Optimal simple beam
- Chapter 8. On mathematics in physics
- 8.1. Summary
- Chapter 9. On the nature of the limit of elasticity
- 9.1. Summary
- Chapter 10. The stress-strain diagram
- Chapter 11. On the nature of proof in physical theory
- 11.1. Summary
- Chapter 12. History of the theory of elasticity
- Chapter 13. On the principles of the theory of elasticity
- 13.1. Summary
- United States Patent 5,654,900 (August 5, 1997) Method of and Apparatus for Optimization of Structures
- Chapter 1. Background of the invention
- 1.1. Field of the Invention
- 1.2. Description of the Prior Art
- Chapter 2. Summary of the invention
- Chapter 3. Description of illustrated exemplary teaching
- Part II: Linear Theory of Infinitesimal Deformations
- Chapter 1. Principles of LTE
- Chapter 2. Stress
- Chapter 3. Deformation
- Chapter 4. Hooke's Law
- Chapter 5. Geometric characteristics of plane areas
- Chapter 6. Combination of stresses
- 6.1. Load and Resistance Factor Design (LRFD)
- Part III: Optimization of typical structures
- Chapter 1. Introduction
- Chapter 2. Tension/compression
- Chapter 3. Torsion
- 3.1. Recapture
- Chapter 4. Bending
- 4.1. Calculation of deflections using the unit load method
- Chapter 5. Combined stresses
- Chapter 6. Continuous beam
- Chapter 7. Stability of thin shells
- 7.1. Calculation for symmetrical thin shells
- Chapter 8. Elastic stability of plates
- Chapter 9. Dynamic stresses and the non-linear theory of elasticity
- Chapter 10. Impact stresses
- 10.1. Tension impact on a bar
- 10.2. Bending impact
- Chapter 11. Testing of materials
- Appendix I. Optimal design of typical beams
- Appendix II
- Tension-compression
- Bending
- Circular cylindrical shells (membrane theory)
- Appendix III. Table for shaft calculation
- Part IV: Further Discussions in the Theory of Elasticity
- Chapter 1. Graph analysis
- 1.1. Commentary to Illustration 1 of Part I
- Chapter 2. Geometrical models of physical functions
- Chapter 3. The equa.