Cargando…

Non-linear theory of elasticity and optimal design : how to build safe economical machines and structures : how to build proven reliable physical theory /

In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ratner, Leah W.
Formato: eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2003.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Non-linear Theory of Elasticity and Optimal Design
  • Copyright Page
  • Contents
  • Preface
  • Introduction
  • Prologue
  • Part I: Principles and Methods of NLTE
  • Chapter 1. Practical problems
  • Chapter 2. Foundations of the non-linear theory of elasticity
  • 2.1. Summary
  • 2.2. Recapture
  • Chapter 3. Devising the non-linear theory of elasticity
  • 3.1. Summary
  • Chapter 4. Principles of logic in NLTE
  • Chapter 5. Method of optimal structural design
  • 5.1. Summary
  • 5.2. Example of beam design
  • Chapter 6. Optimal structural design (examples)
  • 6.1. Tension/compression and bending
  • 6.2. Beams with multiple supports
  • 6.3. Deformation of plates
  • Chapter 7. Optimal simple beam
  • Chapter 8. On mathematics in physics
  • 8.1. Summary
  • Chapter 9. On the nature of the limit of elasticity
  • 9.1. Summary
  • Chapter 10. The stress-strain diagram
  • Chapter 11. On the nature of proof in physical theory
  • 11.1. Summary
  • Chapter 12. History of the theory of elasticity
  • Chapter 13. On the principles of the theory of elasticity
  • 13.1. Summary
  • United States Patent 5,654,900 (August 5, 1997) Method of and Apparatus for Optimization of Structures
  • Chapter 1. Background of the invention
  • 1.1. Field of the Invention
  • 1.2. Description of the Prior Art
  • Chapter 2. Summary of the invention
  • Chapter 3. Description of illustrated exemplary teaching
  • Part II: Linear Theory of Infinitesimal Deformations
  • Chapter 1. Principles of LTE
  • Chapter 2. Stress
  • Chapter 3. Deformation
  • Chapter 4. Hooke's Law
  • Chapter 5. Geometric characteristics of plane areas
  • Chapter 6. Combination of stresses
  • 6.1. Load and Resistance Factor Design (LRFD)
  • Part III: Optimization of typical structures
  • Chapter 1. Introduction
  • Chapter 2. Tension/compression
  • Chapter 3. Torsion
  • 3.1. Recapture
  • Chapter 4. Bending
  • 4.1. Calculation of deflections using the unit load method
  • Chapter 5. Combined stresses
  • Chapter 6. Continuous beam
  • Chapter 7. Stability of thin shells
  • 7.1. Calculation for symmetrical thin shells
  • Chapter 8. Elastic stability of plates
  • Chapter 9. Dynamic stresses and the non-linear theory of elasticity
  • Chapter 10. Impact stresses
  • 10.1. Tension impact on a bar
  • 10.2. Bending impact
  • Chapter 11. Testing of materials
  • Appendix I. Optimal design of typical beams
  • Appendix II
  • Tension-compression
  • Bending
  • Circular cylindrical shells (membrane theory)
  • Appendix III. Table for shaft calculation
  • Part IV: Further Discussions in the Theory of Elasticity
  • Chapter 1. Graph analysis
  • 1.1. Commentary to Illustration 1 of Part I
  • Chapter 2. Geometrical models of physical functions
  • Chapter 3. The equa.