Relation algebras by games /
Relation algebras are algebras arising from the study of binary relations. They form a part of the field of algebraic logic, and have applications in proof theory, modal logic, and computer science. This research text uses combinatorial games to study the fundamental notion of representations of rel...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
North Holland/Elsevier,
2002.
|
Edición: | 1st ed. |
Colección: | Studies in logic and the foundations of mathematics ;
v. 147. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Introduction
- Preliminaries
- Binary relations and relation algebra
- Examples of relation algebras
- Relativisation and cylindric algebras
- Other approaches to algebras of relations
- Games and networks
- Axiomatising representable relation algebras and cylindric algebras
- Axiomatising pseudo-elementary classes
- Game trees
- Atomic networks
- Relational, cylindric, and hyperbases
- Approximations to RRA
- Strongly representable relation algabra atom structures
- Non-finite axiomatisability of SRaCAn+1 over SRaCAn
- The rainbow construction for relation algebras
- Applying the rainbow construction
- Undecidability of the representation problem for finite algebras
- Finite base property
- Brief summary
- Problems.