Linear algebra, rational approximation, and orthogonal polynomials /
Evolving from an elementary discussion, this book develops the Euclidean algorithm to a very powerful tool to deal with general continued fractions, non-normal Pa�d tables, look-ahead algorithms for Hankel and Toeplitz matrices, and for Krylov subspace methods. It introduces the basics of...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York :
Elsevier,
1997.
|
Colección: | Studies in computational mathematics ;
6. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- List of symbols
- Chapter 1. Euclidean fugues
- 1.1 The algorithm of Euclid
- 1.2 Euclidean ring and g.c.l.d
- 1.3 Extended Euclidean algorithm
- 1.4 Continued fraction expansions
- 1.5 Approximating formal series
- 1.6 Atomic Euclidean algorithm
- 1.7 Viscovatoff algorithm
- 1.8 Layer peeling vs. layer adjoining methods
- 1.9 Left-Riight duality
- Chapter 2. Linear algebra of Hankels
- 2.1 Conventions and notations
- 2.2 Hankel matrices
- 2.3 Tridiagonal matrices
- 2.4 Structured Hankel information
- 2.5 Block Gram-Schmidt algorithm
- 2.6 The Schur algorithm
- 2.7 The Viscovatoff algorithm
- Chapter 3. Lanczos algorithm
- 3.1 Krylov spaces
- 3.2 Biorthogonality
- 3.3 The generic algorithm
- 3.4 The Euclidean Lanczos algorithm
- 3.5 Breakdown
- 3.6 Note of warning
- Chapter 4. Orthogonal polynomials
- 4.1 Generalities
- 4.2 Orthogonal polynomials
- 4.3 Properties
- 4.4 Hessenberg matrices
- 4.5 Schur algorithm
- 4.6 Rational approximation
- 4.7 Generalization of Lanczos algorithm
- 4.8 The Hankel case
- 4.9 Toeplitz case
- 4.10 Formal orthogonality on an algebraic curve
- Chapter 5. Pade approximation
- 5.1 Definitions and terminology
- 5.2 Computation of diagonal PAs
- 5.3 Computation of antidiagonal PAs
- 5.4 Computation of staircase PAs
- 5.5 Minimal indices
- 5.6 Minimal Pad�e approximation
- 5.7 The Massey algorithm
- Chapter 6. Linear systems
- 6.1 Definitions
- 6.2 More definitions and properties
- 6.3 The minimal partial realization problem
- 6.4 Interpretation of the Pad�e results
- 6.5 The mixed problem
- 6.6 Interpretation of the Toeplitz results
- 6.7 Stability checks
- Chapter 7. General rational interpolation
- 7.1 General framework
- 7.2 Elementary updating and downdating steps
- 7.3 A general recurrence step
- 7.4 Pad�e approximation
- 7.5 Other applications
- Chapter 8. Wavelets
- 8.1 Interpolating subdivisions
- 8.2 Multiresolution
- 8.3 Wavelet transforms
- 8.4 The lifting scheme
- 8.5 Polynomial formulation
- 8.6 Euclidean domain of Laurent polynomials
- 8.7 Factorization algorithm
- Bibliography
- List of Algorithms
- Index
- Last Page.