Linear algebra, rational approximation, and orthogonal polynomials /
Evolving from an elementary discussion, this book develops the Euclidean algorithm to a very powerful tool to deal with general continued fractions, non-normal Pa�d tables, look-ahead algorithms for Hankel and Toeplitz matrices, and for Krylov subspace methods. It introduces the basics of...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; New York :
Elsevier,
1997.
|
Colección: | Studies in computational mathematics ;
6. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | SCIDIR_ocn162130836 | ||
003 | OCoLC | ||
005 | 20231117014843.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070802s1997 ne a ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OCLCG |d OPELS |d OCLCQ |d N$T |d YDXCP |d MERUC |d E7B |d IDEBK |d OCLCQ |d TULIB |d OPELS |d OCLCF |d DEBBG |d OCLCO |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d OCLCQ |d STF |d D6H |d OCLCQ |d LEAUB |d OL$ |d BWN |d OCLCQ |d S2H |d OCLCO |d OCLCQ |d COM |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 174131257 |a 175315392 |a 441800873 |a 647656025 |a 779919954 |a 989455369 |a 1035686331 |a 1110348426 | ||
020 | |a 9780444828729 | ||
020 | |a 0444828729 | ||
020 | |a 9780080535524 |q (electronic bk.) | ||
020 | |a 0080535526 |q (electronic bk.) | ||
035 | |a (OCoLC)162130836 |z (OCoLC)174131257 |z (OCoLC)175315392 |z (OCoLC)441800873 |z (OCoLC)647656025 |z (OCoLC)779919954 |z (OCoLC)989455369 |z (OCoLC)1035686331 |z (OCoLC)1110348426 | ||
050 | 4 | |a QA242 |b .B88 1997eb | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 0 | 4 | |a 512/.72 |2 22 |
100 | 1 | |a Bultheel, Adhemar. | |
245 | 1 | 0 | |a Linear algebra, rational approximation, and orthogonal polynomials / |c Adhemar Bultheel, Marc van Barel. |
260 | |a Amsterdam ; |a New York : |b Elsevier, |c 1997. | ||
300 | |a 1 online resource (xvii, 446 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in computational mathematics ; |v 6 | |
520 | |a Evolving from an elementary discussion, this book develops the Euclidean algorithm to a very powerful tool to deal with general continued fractions, non-normal Pa�d tables, look-ahead algorithms for Hankel and Toeplitz matrices, and for Krylov subspace methods. It introduces the basics of fast algorithms for structured problems and shows how they deal with singular situations. Links are made with more applied subjects such as linear system theory and signal processing, and with more advanced topics and recent results such as general bi-orthogonal polynomials, minimal Pa�d approximation, polynomial root location problems in the complex plane, very general rational interpolation problems, and the lifting scheme for wavelet transform computation. The text serves as a supplement to existing books on structured linear algebra problems, rational approximation and orthogonal polynomials. Features of this book: & bull; provides a unifying approach to linear algebra, rational approximation and orthogonal polynomials & bull; requires an elementary knowledge of calculus and linear algebra yet introduces advanced topics. The book will be of interest to applied mathematicians and engineers and to students and researchers. | ||
504 | |a Includes bibliographical references (pages 413-433) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover -- Contents -- Preface -- List of symbols -- Chapter 1. Euclidean fugues -- 1.1 The algorithm of Euclid -- 1.2 Euclidean ring and g.c.l.d -- 1.3 Extended Euclidean algorithm -- 1.4 Continued fraction expansions -- 1.5 Approximating formal series -- 1.6 Atomic Euclidean algorithm -- 1.7 Viscovatoff algorithm -- 1.8 Layer peeling vs. layer adjoining methods -- 1.9 Left-Riight duality -- Chapter 2. Linear algebra of Hankels -- 2.1 Conventions and notations -- 2.2 Hankel matrices -- 2.3 Tridiagonal matrices -- 2.4 Structured Hankel information -- 2.5 Block Gram-Schmidt algorithm -- 2.6 The Schur algorithm -- 2.7 The Viscovatoff algorithm -- Chapter 3. Lanczos algorithm -- 3.1 Krylov spaces -- 3.2 Biorthogonality -- 3.3 The generic algorithm -- 3.4 The Euclidean Lanczos algorithm -- 3.5 Breakdown -- 3.6 Note of warning -- Chapter 4. Orthogonal polynomials -- 4.1 Generalities -- 4.2 Orthogonal polynomials -- 4.3 Properties -- 4.4 Hessenberg matrices -- 4.5 Schur algorithm -- 4.6 Rational approximation -- 4.7 Generalization of Lanczos algorithm -- 4.8 The Hankel case -- 4.9 Toeplitz case -- 4.10 Formal orthogonality on an algebraic curve -- Chapter 5. Pade approximation -- 5.1 Definitions and terminology -- 5.2 Computation of diagonal PAs -- 5.3 Computation of antidiagonal PAs -- 5.4 Computation of staircase PAs -- 5.5 Minimal indices -- 5.6 Minimal Pad�e approximation -- 5.7 The Massey algorithm -- Chapter 6. Linear systems -- 6.1 Definitions -- 6.2 More definitions and properties -- 6.3 The minimal partial realization problem -- 6.4 Interpretation of the Pad�e results -- 6.5 The mixed problem -- 6.6 Interpretation of the Toeplitz results -- 6.7 Stability checks -- Chapter 7. General rational interpolation -- 7.1 General framework -- 7.2 Elementary updating and downdating steps -- 7.3 A general recurrence step -- 7.4 Pad�e approximation -- 7.5 Other applications -- Chapter 8. Wavelets -- 8.1 Interpolating subdivisions -- 8.2 Multiresolution -- 8.3 Wavelet transforms -- 8.4 The lifting scheme -- 8.5 Polynomial formulation -- 8.6 Euclidean domain of Laurent polynomials -- 8.7 Factorization algorithm -- Bibliography -- List of Algorithms -- Index -- Last Page. | |
650 | 0 | |a Euclidean algorithm. | |
650 | 0 | |a Algebras, Linear. | |
650 | 0 | |a Pad�e approximant. | |
650 | 0 | |a Orthogonal polynomials. | |
650 | 6 | |a Algorithme d'Euclide. |0 (CaQQLa)201-0270600 | |
650 | 6 | |a Alg�ebre lin�eaire. |0 (CaQQLa)201-0001189 | |
650 | 6 | |a Approximants de Pad�e. |0 (CaQQLa)201-0021341 | |
650 | 6 | |a Polyn�omes orthogonaux. |0 (CaQQLa)201-0011281 | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Algebras, Linear |2 fast |0 (OCoLC)fst00804946 | |
650 | 7 | |a Euclidean algorithm |2 fast |0 (OCoLC)fst00916406 | |
650 | 7 | |a Orthogonal polynomials |2 fast |0 (OCoLC)fst01048521 | |
650 | 7 | |a Pad�e approximant |2 fast |0 (OCoLC)fst01050307 | |
700 | 1 | |a Barel, Marc van, |d 1960- | |
776 | 0 | 8 | |i Print version: |a Bultheel, Adhemar. |t Linear algebra, rational approximation, and orthogonal polynomials. |d Amsterdam ; New York : Elsevier, 1997 |z 0444828729 |z 9780444828729 |w (DLC) 97040610 |w (OCoLC)37682686 |
830 | 0 | |a Studies in computational mathematics ; |v 6. | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444828729 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/publication?issn=1570579X&volume=6 |z Texto completo |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/bookseries/1570579X/6 |z Texto completo |