Assessment of safety and risk with a microscopic model of detonation /
This unique book is a store of less well-known explosion and detonation phenomena, including also data and experiences related to safety risks. It highlights the shortcomings of the current engineering codes based on a classical plane wave model of the phenomenon, and why these tools must fail. For...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier,
2003.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Prologue. I. Shortcomings in the macroscopic plane-wave model of detonation. II. Impedance mirror photography of H. Dean Mallory. III. Pressure generating mechanis. IV. Equations. V. Pressure sources for modeling. VI. Rayleigh's bubble model. VII. Losses by volume variations. VIII. Variety of initiation modes by bubbles. IX. Various approaches to describe bubble dynamic phenomena. X. Sensitivity testing. XI. Low- (LVD) and slow-velocity detonation (SVD) of liquid explosives. XII. Low velocity detonation of solid explosives. XIII. Case histories. XIV. Dipole scattering. XV. Finite shock rise. XVI. Void precursors. XVII. Alterations of hugoniots by bubble flow. XVIII. Critical dimensions. XIX. Critical diameter(s) of nitromethane (NM). XX. Smooth and rough pressure fronts, dark waves and DDT. XXI. Shock tubes. XXII. Detonation phenomena in charges with an axial cavity. XXIII. Microscopic and macroscopic properties of solids. XXIV. Fracture dynamics of initiation. Authors. Subject index.