Cargando…

Stochastic equations through the eye of the physicist : basic concepts, exact results and asymptotic approximations /

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kl�i�a�t�skin, V. I. (Valeri�i Isaakovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2005.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents / Preface / Introduction
  • I Dynamical description of stochastic systems
  • 1 Examples, basic problems, peculiar features of solutions
  • 2 Indicator function and Liouville equation
  • II Stochastic equations
  • 3 Random quantities, processes and fields
  • 4 Correlation splitting
  • 5 General approaches to analyzing stochastic dynamic systems
  • 6 Stochastic equations with the Markovian fluctuations of parameters
  • III Asymptotic and approximate methods for analyzing stochastic equations
  • 7 Gaussian random field delta-correlated in time (ordinary differential equations)
  • 8 Methods for solving and analyzing the Fokker-Planck equation
  • 9 Gaussian delta-correlated random field (causal integral equations)
  • 10 Diffusion approximation
  • IV Coherent phenomena in stochastic dynamic systems
  • 11 Passive tracer clustering and diffusion in random hydrodynamic flows
  • 12 Wave localization in randomly layered media
  • 13 Wave propagation in random inhomogeneous medium
  • 14 Some problems of statistical hydrodynamics
  • A Variation (functional) derivatives
  • B Fundamental solutions of wave problems in empty and layered media
  • B.1 The case of empty space
  • B.2 The case of layered space
  • C Imbedding method in boundary-value wave problems
  • C.1 Boundary-value problems for ordinary differential equations
  • C.2 Stationary boundary-value wave problems
  • C.2.1 One-dimensional stationary boundary-value wave problems.