Cargando…

Stochastic equations through the eye of the physicist : basic concepts, exact results and asymptotic approximations /

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kl�i�a�t�skin, V. I. (Valeri�i Isaakovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2005.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162130169
003 OCoLC
005 20231117014821.0
006 m o d
007 cr cn|||||||||
008 070802s2005 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d BAKER  |d OPELS  |d OCLCQ  |d OCLCF  |d UIU  |d N$T  |d YDXCP  |d MERUC  |d UBY  |d E7B  |d OCLCQ  |d EBLCP  |d OCLCQ  |d STF  |d NLE  |d OCLCQ  |d UKMGB  |d LEAUB  |d OL$  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCA  |d OCLCO  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB6H3491  |2 bnb 
016 7 |a 017568281  |2 Uk 
019 |a 123080052  |a 505058914  |a 647546644  |a 1035654170  |a 1162298180 
020 |a 9780080457642  |q (electronic bk.) 
020 |a 0080457649  |q (electronic bk.) 
020 |a 1280638273 
020 |a 9781280638275 
020 |a 9786610638277 
020 |a 6610638276 
020 |z 9780444517975 
020 |z 0444517979 
035 |a (OCoLC)162130169  |z (OCoLC)123080052  |z (OCoLC)505058914  |z (OCoLC)647546644  |z (OCoLC)1035654170  |z (OCoLC)1162298180 
050 4 |a QC20.7.S8  |b K59 2005eb 
072 7 |a QC  |2 lcco 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/3  |2 22 
100 1 |a Kl�i�a�t�skin, V. I.  |q (Valeri�i Isaakovich) 
245 1 0 |a Stochastic equations through the eye of the physicist :  |b basic concepts, exact results and asymptotic approximations /  |c V.I Klyatskin. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2005. 
300 |a 1 online resource (xviii, 538 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere. Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields. The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data. This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated "nonlinear functional" of random fields and processes. Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools. Part II and III sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples. Part IV takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering), wave propagation in disordered 2D and 3D media. For the sake of reader I provide several appendixes (Part V) that give many technical mathematical details needed in the book. For scientists dealing with stochastic dynamic systems in different areas, such as hydrodynamics, acoustics, radio wave physics, theoretical and mathematical physics, and applied mathematics the theory of stochastic in terms of the functional analysis Referencing those papers, which are used or discussed in this book and also recent review papers with extensive bibliography on the subject 
505 0 |a Contents / Preface / Introduction -- I Dynamical description of stochastic systems -- 1 Examples, basic problems, peculiar features of solutions -- 2 Indicator function and Liouville equation -- II Stochastic equations -- 3 Random quantities, processes and fields -- 4 Correlation splitting -- 5 General approaches to analyzing stochastic dynamic systems -- 6 Stochastic equations with the Markovian fluctuations of parameters -- III Asymptotic and approximate methods for analyzing stochastic equations -- 7 Gaussian random field delta-correlated in time (ordinary differential equations) -- 8 Methods for solving and analyzing the Fokker-Planck equation -- 9 Gaussian delta-correlated random field (causal integral equations) -- 10 Diffusion approximation -- IV Coherent phenomena in stochastic dynamic systems -- 11 Passive tracer clustering and diffusion in random hydrodynamic flows -- 12 Wave localization in randomly layered media -- 13 Wave propagation in random inhomogeneous medium -- 14 Some problems of statistical hydrodynamics -- A Variation (functional) derivatives -- B Fundamental solutions of wave problems in empty and layered media -- B.1 The case of empty space -- B.2 The case of layered space -- C Imbedding method in boundary-value wave problems -- C.1 Boundary-value problems for ordinary differential equations -- C.2 Stationary boundary-value wave problems -- C.2.1 One-dimensional stationary boundary-value wave problems. 
504 |a Includes bibliographical references (pages 513-534) and index. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Stochastic processes. 
650 0 |a Stochastic analysis. 
650 0 |a Mathematical physics. 
650 2 |a Stochastic Processes  |0 (DNLM)D013269 
650 6 |a Processus stochastiques.  |0 (CaQQLa)201-0002663 
650 6 |a Analyse stochastique.  |0 (CaQQLa)201-0002662 
650 6 |a Physique math�ematique.  |0 (CaQQLa)201-0008394 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical physics  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Stochastic analysis  |2 fast  |0 (OCoLC)fst01133499 
650 7 |a Stochastic processes  |2 fast  |0 (OCoLC)fst01133519 
776 0 8 |i Print version:  |a Kl�i�a�t�skin, Valeri�i Isaakovich.  |t Stochastic equations through the eye of the physicist.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2005  |z 0444517979  |z 9780444517975  |w (OCoLC)61029979 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444517975  |z Texto completo