Cargando…

Infinite dimensional linear control systems : the time optimal and norm optimal problems /

For more than forty years, the equation y(t) = Ay(t) + u(t) in Banach spaces has been used as model for optimal control processes described by partial differential equations, in particular heat and diffusion processes. Many of the outstanding open problems, however, have remained open until recently...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fattorini, H. O. (Hector O.), 1938-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2005.
Edición:1st ed.
Colección:North-Holland mathematics studies ; 201.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162130148
003 OCoLC
005 20231117014820.0
006 m o d
007 cr cn|||||||||
008 070802s2005 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OPELS  |d OCLCQ  |d MERUC  |d E7B  |d YDXCP  |d IDEBK  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d DEBSZ  |d OCLCQ  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d N$T  |d OCLCQ  |d STF  |d D6H  |d OCLCQ  |d LEAUB  |d OL$  |d BWN  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 171113690  |a 441762603  |a 647546658  |a 779919906  |a 989265998  |a 1035656658  |a 1110405104 
020 |a 0080457347  |q (electronic bk.) 
020 |a 9780080457345  |q (electronic bk.) 
020 |z 9780444516329 
020 |z 0444516328 
035 |a (OCoLC)162130148  |z (OCoLC)171113690  |z (OCoLC)441762603  |z (OCoLC)647546658  |z (OCoLC)779919906  |z (OCoLC)989265998  |z (OCoLC)1035656658  |z (OCoLC)1110405104 
050 4 |a QA402.3  |b .F367 2005eb 
072 7 |a QA  |2 lcco 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.8  |2 22 
100 1 |a Fattorini, H. O.  |q (Hector O.),  |d 1938- 
245 1 0 |a Infinite dimensional linear control systems :  |b the time optimal and norm optimal problems /  |c H.O. Fattorini. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2005. 
300 |a 1 online resource (xii, 320 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies,  |x 0304-0208 ;  |v 201 
520 |a For more than forty years, the equation y(t) = Ay(t) + u(t) in Banach spaces has been used as model for optimal control processes described by partial differential equations, in particular heat and diffusion processes. Many of the outstanding open problems, however, have remained open until recently, and some have never been solved. This book is a survey of all results know to the author, with emphasis on very recent results (1999 to date). The book is restricted to linear equations and two particular problems (the time optimal problem, the norm optimal problem) which results in a more focused and concrete treatment. As experience shows, results on linear equations are the basis for the treatment of their semilinear counterparts, and techniques for the time and norm optimal problems can often be generalized to more general cost functionals. The main object of this book is to be a state-of-the-art monograph on the theory of the time and norm optimal controls for y(t) = Ay(t) + u(t) that ends at the very latest frontier of research, with open problems and indications for future research. Key features: Applications to optimal diffusion processes. Applications to optimal heat propagation processes. Modelling of optimal processes governed by partial differential equations. Complete bibliography. Includes the latest research on the subject. Does not assume anything from the reader except basic functional analysis. Accessible to researchers and advanced graduate students alike Applications to optimal diffusion processes. Applications to optimal heat propagation processes. Modelling of optimal processes governed by partial differential equations. Complete bibliography. Includes the latest research on the subject. Does not assume anything from the reader except basic functional analysis. Accessible to researchers and advanced graduate students alike. 
505 0 |a PREFACE -- CHAPTER 1: INTRODUCTIONP> -- 1.1 Finite dimensional systems: the maximum principle. -- 1.2. Finite dimensional systems: existence and uniqueness. -- 1.3. Infinite dimensional systems. -- CHAPTER 2: SYSTEMS WITH STRONGLY MEASURABLE CONTROLS, I -- 2.1. The reachable space and the bang-bang property -- 2.2. Reversible systems -- 2.3. The reachable space and its dual, I -- 2.4. The reachable space and its dual, II -- 2.5. The maximum principle -- 2.6. Vanishing of the costate and nonuniqueness for norm optimal controls -- 2.7. Vanishing of the costate for time optimal controls -- 2.8. Singular norm optimal controls -- 2.9. Singular norm optimal controls and singular functionals -- CHAPTER 3: SYSTEMS WITH STRONGLY MEASURABLE CONTROLS, II -- 3.1. Existence and uniqueness of optimal controls -- 3.2. The weak maximum principle and the time optimal problem -- 3.3. Modeling of parabolic equations -- 3.4. Weakly singular extremals -- 3.5. More on the weak maximum principle -- 3.6. Convergence of minimizing sequences and stability of optimal controls -- CHAPTER 4: OPTIMAL CONTROL OF HEAT PROPAGATION -- 4.1. Modeling of parabolic equations -- 4.2. Adjoints -- 4.3. Adjoint semigroups -- 4.4. The reachable space -- 4.5. The reachable space and its dual, I -- 4.6. The reachable space and its dual, II -- 4.7. The maximum principle -- 4.8. Existence, uniqueness and stability of optimal controls -- 4.9. Examples and applications -- CHAPTER 5: OPTIMAL CONTROL OF DIFFUSIONS -- 5.1. Modeling of parabolic equations -- 5.2. Dual spaces -- 5.3. The reachable space and its dual -- 5.4. The maximum principle -- 5.5. Existence of optimal controls; uniqueness and stability of supports -- 5.6. Examples and applications. -- CHAPTER 6: APPENDIX -- 6.1 Self adjoint operators, I -- 6.2 Self adjoint operators, II -- 6.3 Related research -- REFERENCES -- NOTATION AND SUBJECT INDEX. 
504 |a Includes bibliographical references (pages 309-318) and index. 
588 0 |a Print version record. 
650 0 |a Control theory. 
650 0 |a Calculus of variations. 
650 0 |a Linear control systems. 
650 0 |a Mathematical optimization. 
650 6 |a Th�eorie de la commande.  |0 (CaQQLa)201-0012168 
650 6 |a Calcul des variations.  |0 (CaQQLa)201-0001183 
650 6 |a Commande lin�eaire.  |0 (CaQQLa)201-0258329 
650 6 |a Optimisation math�ematique.  |0 (CaQQLa)201-0007680 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a Calculus of variations  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a Control theory  |2 fast  |0 (OCoLC)fst00877085 
650 7 |a Linear control systems  |2 fast  |0 (OCoLC)fst00999065 
650 7 |a Mathematical optimization  |2 fast  |0 (OCoLC)fst01012099 
776 0 8 |i Print version:  |a Fattorini, H.O. (Hector O.), 1938-  |t Infinite dimensional linear control systems.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2005  |z 0444516328  |z 9780444516329  |w (DLC) 2005049489  |w (OCoLC)60320153 
830 0 |a North-Holland mathematics studies ;  |v 201.  |x 0304-0208 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444516329  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=201  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/201  |z Texto completo