Cargando…

Nonmeasurable sets and functions /

The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kharazishvili, A. B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2004.
Edición:1st ed.
Colección:North-Holland mathematics studies ; 195.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn162130131
003 OCoLC
005 20231117014820.0
006 m o d
007 cr cn|||||||||
008 070802s2004 ne ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCQ  |d OPELS  |d OCLCQ  |d N$T  |d MERUC  |d E7B  |d IDEBK  |d DEBBG  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d YDXCP  |d OCLCQ  |d EBLCP  |d OCLCQ  |d COO  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ESU  |d D6H  |d NLE  |d LEAUB  |d OL$  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 62386973  |a 441789250  |a 648257746  |a 779920177 
020 |a 9780444516268 
020 |a 0444516263 
020 |a 1423741846  |q (electronic bk.) 
020 |a 9781423741848  |q (electronic bk.) 
020 |a 0080479766  |q (electronic bk.) 
020 |a 9780080479767  |q (electronic bk.) 
035 |a (OCoLC)162130131  |z (OCoLC)62386973  |z (OCoLC)441789250  |z (OCoLC)648257746  |z (OCoLC)779920177 
050 4 |a QA312  |b .K526 2004eb 
072 7 |a QA  |2 lcco 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.42  |2 22 
100 1 |a Kharazishvili, A. B. 
245 1 0 |a Nonmeasurable sets and functions /  |c A.B. Kharazishvili. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Boston :  |b Elsevier,  |c 2004. 
300 |a 1 online resource (xi, 337 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a North-Holland mathematics studies,  |x 0304-0208 ;  |v 195 
520 |a The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics: 1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces; 2. The theory of non-real-valued-measurable cardinals; 3. The theory of invariant (quasi-invariant) extensions of invariant (quasi-invariant) measures. These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions. highlights the importance of nonmeasurable sets (functions) for general measure extension problem. Deep connections of the topic with set theory, real analysis, infinite combinatorics, group theory and geometry of Euclidean spaces shown and underlined. self-contained and accessible for a wide audience of potential readers. Each chapter ends with exercises which provide valuable additional information about nonmeasurable sets and functions. Numerous open problems and questions. 
505 0 |a Contents -- Preface. -- 1. The Vitali theorem. -- 2. The Bernstein construction. -- 3. Nonmeasurable sets associated with Hamel bases. -- 4. The Fubini theorem and nonmeasurable sets. -- 5. Small nonmeasurable sets. -- 6. Strange subsets of the Euclidean plane. -- 7. Some special constructions of nonmeasurable sets. -- 8. The Generalized Vitali construction. -- 9. Selectors associated with countable subgroups. -- 10. Selectors associated with uncountable subgroups. -- 11. Absolutely nonmeasurable sets in groups. -- 12. Ideals producing nonmeasurable unions of sets. -- 13. Measurability properties of subgroups of a given group. -- 14. Groups of rotations and nonmeasurable sets. -- 15. Nonmeasurable sets associated with filters. -- Appendix 1: Logical aspects of the existence of nonmeasurable sets. -- Appendix 2: Some facts from the theory of commutative groups. 
504 |a Includes bibliographical references (pages 317-333) and index. 
588 0 |a Print version record. 
650 0 |a Measure theory. 
650 0 |a Functional analysis. 
650 0 |a Set theory. 
650 6 |a Th�eorie de la mesure.  |0 (CaQQLa)201-0005696 
650 6 |a Analyse fonctionnelle.  |0 (CaQQLa)201-0001196 
650 6 |a Th�eorie des ensembles.  |0 (CaQQLa)201-0001167 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functional analysis  |2 fast  |0 (OCoLC)fst00936061 
650 7 |a Measure theory  |2 fast  |0 (OCoLC)fst01013175 
650 7 |a Set theory  |2 fast  |0 (OCoLC)fst01113587 
776 0 8 |i Print version:  |a Kharazishvili, A.B.  |t Nonmeasurable sets and functions.  |b 1st ed.  |d Amsterdam ; Boston : Elsevier, 2004  |z 0444516263  |z 9780444516268  |w (DLC) 2004049706  |w (OCoLC)55078412 
830 0 |a North-Holland mathematics studies ;  |v 195.  |x 0304-0208 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444516268  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/publication?issn=03040208&volume=195  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208/195  |z Texto completo 
856 4 1 |u https://sciencedirect.uam.elogim.com/science/bookseries/03040208  |z Texto completo