Bifurcation and chaos in complex systems /
Presents the achievements on bifurcation studies of nonlinear dynamical systems. This book deals with the fundamental theoretical issues of bifurcation analysis in smooth and non-smooth dynamical systems. The cell mapping methods are presented for global bifurcations in stochastic and deterministic,...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2006.
|
Colección: | Edited series on advances in nonlinear science and complexity ;
v. 1. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | SCIDIR_ocm77197492 | ||
003 | OCoLC | ||
005 | 20231117014729.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 061221s2006 ne a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d MERUC |d UBY |d E7B |d OCLCQ |d IDEBK |d OCLCQ |d UIU |d OCLCQ |d OCLCF |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d D6H |d OCLCQ |d LEAUB |d VLY |d NRU |d UKDOC |d S2H |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 441752379 |a 476003842 |a 505116155 |a 647547623 |a 936845946 |a 1162397395 | ||
020 | |a 0080462669 |q (electronic bk.) | ||
020 | |a 9780080462660 |q (electronic bk.) | ||
020 | |z 0444522298 |q (Cloth) | ||
020 | |z 9780444522290 | ||
020 | |a 1280641908 | ||
020 | |a 9781280641909 | ||
020 | |a 9786610641901 | ||
020 | |a 6610641900 | ||
035 | |a (OCoLC)77197492 |z (OCoLC)441752379 |z (OCoLC)476003842 |z (OCoLC)505116155 |z (OCoLC)647547623 |z (OCoLC)936845946 |z (OCoLC)1162397395 | ||
050 | 4 | |a QA380 |b .B5395 2006eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
082 | 0 | 4 | |a 515.392 |2 22 |
245 | 0 | 0 | |a Bifurcation and chaos in complex systems / |c edited by Jian-Qiao Sun, Albert C.J. Luo. |
260 | |a Amsterdam : |b Elsevier, |c 2006. | ||
300 | |a 1 online resource (xii, 388 pages) : |b illustrations (1 color). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Edited series on advances in nonlinear science and complexity, |x 1574-6909 ; |v v. 1 | |
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Cover Dedication Preface Contents Bifurcation, Limit Cycle and Chaos of Nonlinear Dynamical Systems -- Introduction -- Bifurcation of limit cycles -- -- Lifting 2-D model with delayed feedback control -- -- Internet congestion model -- -- Hilbert's 16th problem -- Bifurcation control and chaos synchronization -- -- Global ultimate boundedness of chaotic systems -- -- Hopf bifurcation control -- -- Tracking and chaos synchronization -- Competitive modes -- -- Definition of CM -- -- Application of CM: estimating chaotic parameter regimes -- -- Application of CM: constructing new chaotic systems -- Conclusions -- Acknowledgement -- References Grazing Flows in Discontinuous Dynamic Systems -- Introduction -- Domain accessibility -- Discontinuous dynamic systems -- Oriented boundary and singular sets -- Local singularity and grazing flows -- Piecewise linear systems -- Friction-induced oscillators -- Conclusions -- Appendix -- References Global Bifurcations of Complex Nonlinear Dynamical Systems with Cell Mapping Methods -- Introduction -- Cell mapping methods -- -- Simple cell mapping -- -- Generalized cell mapping -- Crises in deterministic systems -- -- A chaotic boundary crisis -- -- Chaotic boundary and interior crises -- -- Wada fractal boundary and indeterminate crisis -- -- Double crises -- Bifurcations of nonlinear systems with small random disturbances -- -- Logistic map with random coefficients -- -- A two-dimensional random map -- -- Duffing oscillator with small random excitations -- -- Noisy crisis in a twin-well Duffing system -- Fuzzy bifurcations -- -- Fuzzy generalized cell mapping -- -- Bifurcation of one-dimensional fuzzy systems -- -- Bifurcation of fuzzy nonlinear oscillators -- -- Conjectures -- Effect of bifurcation on semiactive optimal controls -- -- Optimal control problem -- -- Saddle-node bifurcation -- -- Supercritical Pitchfork bifurcation -- -- Subcritical Hopf bifurcation -- References Bifurcation Analysis of Nonlinear Dynamic Systems with Time-Periodic Coefficients -- Introduction -- Formulation of the problem -- Local stability and conditions for bifurcations: Floqu�et theory -- Lyapunov-Floqu�et transformation -- Nonlinear analysis -- -- Time-periodic center manifold reduction -- -- Time-dependent normal form theory -- -- Versal deformation of the normal form -- -- Solution in the original (physical) variables -- The codimension one bifurcations -- -- Flip bifurcation -- -- Transcritical and symmetry breaking bifurcations -- -- Cyclic fold bifurcation -- -- Secondary Hopf bifurcation -- Applications -- -- A system with an exact solution: an example of the flip bifurcation -- -- A system with a small parameter: a comparison with averaging method -- -- A simple pendulum with periodic base excitation: an example of the symmetry breaking bifurcation -- -- An example of the secondary Hopf bifurcation: a double inverted pendulum with a periodic follower load -- Summary and conclusions -- References Modal Interactionsmodal interactions in Asymmetric Vibrations of Circular Platescircular plates -- Introduction -- Governing equations -- Solution -- Steady-state responses and numerical examples -- -- The plate without elastic foundation (K = 0): the case of no internal resonance -- -- The plate on elastic foundation (K> 0): the case of internal resonance (omegaNM 3?CD, where N = 3C) -- -- The plate on elastic foundation (K> 0): the case of internal resonance (?NM 3?CD, where N = C) -- Appendix A -- Appendix B -- -- Case 1:?32 3?11 and??11 -- -- Case 2:?32 3?11 and??32 -- Appendix C -- References List of Contributors Author Index Subject Index Last Page. | |
588 | 0 | |a Print version record. | |
520 | |a Presents the achievements on bifurcation studies of nonlinear dynamical systems. This book deals with the fundamental theoretical issues of bifurcation analysis in smooth and non-smooth dynamical systems. The cell mapping methods are presented for global bifurcations in stochastic and deterministic, nonlinear dynamical systems. | ||
546 | |a English. | ||
650 | 0 | |a Bifurcation theory. | |
650 | 0 | |a Chaotic behavior in systems. | |
650 | 0 | |a Nonlinear systems. | |
650 | 6 | |a Th�eorie de la bifurcation. |0 (CaQQLa)201-0027940 | |
650 | 6 | |a Chaos. |0 (CaQQLa)201-0128834 | |
650 | 6 | |a Syst�emes non lin�eaires. |0 (CaQQLa)201-0282086 | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Bifurcation theory |2 fast |0 (OCoLC)fst00831564 | |
650 | 7 | |a Chaotic behavior in systems |2 fast |0 (OCoLC)fst00852171 | |
650 | 7 | |a Nonlinear systems |2 fast |0 (OCoLC)fst01038810 | |
700 | 1 | |a Sun, Jian-Qiao. | |
700 | 1 | |a Luo, Albert C. J. | |
776 | 0 | 8 | |i Print version: |t Bifurcation and chaos in complex systems. |d Amsterdam : Elsevier, 2006 |z 0444522298 |w (OCoLC)74270552 |
830 | 0 | |a Edited series on advances in nonlinear science and complexity ; |v v. 1. |x 1574-6909 | |
856 | 4 | 0 | |u https://sciencedirect.uam.elogim.com/science/book/9780444522290 |z Texto completo |
856 | 4 | |u https://sciencedirect.uam.elogim.com/science/bookseries/15746909/1 |z Texto completo |