Advances in survival analysis /
The book covers all important topics in the area of Survival Analysis. Each topic has been covered by one or more chapters written by internationally renowned experts. Each chapter provides a comprehensive and up-to-date review of the topic. Several new illustrative examples have been used to demons...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Elsevier North-Holland,
2004.
|
Edición: | 1st ed. |
Colección: | Handbook of statistics (Amsterdam, Netherlands) ;
v. 23. |
Temas: | |
Acceso en línea: | Texto completo Texto completo Texto completo Texto completo |
Tabla de Contenidos:
- Cover
- Table of Contents
- Preface
- Contributors
- PART I: GENERAL METHODOLOGY
- Chapter 1. Evaluation of the Performance of Survival Analysis Models: Discrimination and Calibration Measures
- 1. Introduction
- 2. Discrimination index
- 3. Calibration measures in survival analysis
- Appendix A
- References
- Chapter 2. Discretizing a Continuous Covariate in Survival Studies
- 1. Introduction
- 2. Techniques based on the Cox model with a single covariate
- 3. Extensions of Contal and O'Quigley's approach
- 4. Discussion
- Acknowledgements
- References
- Chapter 3. On Comparison of Two Classification Methods with Survival Endpoints
- 1. Introduction
- 2. Degree of separation index
- 3. Estimation and inference procedures
- 4. Distribution property of test statistics under the null hypothesis
- 5. Application examples
- 6. Discussion and conclusion
- Acknowledgement
- References
- Chapter 4. Time Varying Effects in Survival Analysis
- 1. Time varying effects in survival analysis
- 2. Estimation for proportional or additive models
- 3. Testing in proportional and additive hazards models
- 4. Survival with malignant melanoma
- 5. Discussion
- Acknowledgement
- References
- Chapter 5. Kaplan-Meier Integrals
- 1. Introduction
- 2. The SLLN
- 3. The CLT
- 4. Bias
- 5. The jackknife
- 6. Censored correlation and regression
- 7. Conclusions
- References
- PART II: CENSORED DATA AND INFERENCE
- Chapter 6. Statistical Analysis of Doubly Interval-Censored Failure Time Data
- 1. Introduction
- 2. Nonparametric estimation of a distribution function
- 3. Semiparametric regression analysis
- 4. Nonparametric comparison of survival functions
- 5. Discussion and future researches
- References
- Chapter 7. The Missing Censoring-Indicator Model of Random Censorship
- 1. Introduction
- 2. Overview of the estimators of a survival function
- 3. Semiparametric estimation in the MCI model
- 4. Conclusion
- Acknowledgement
- References
- Chapter 8. Estimation of the Bivariate Survival Function with Generalized Bivariate Right Censored Data Structures
- 1. Introduction
- 2. Modeling the censoring mechanism
- 3. Constructing an initial mapping from full data estimating functions to observed data estimating functions
- 4. Generalized Dabrowska's estimator
- 5. Orthogonalized estimating function and corresponding estimator
- 6. Simulations
- 7. Discussion
- Appendix A
- References
- Chapter 9. Estimation of Semi-Markov Models with Right-Censored Data
- 1. Introduction
- 2. Definition of the estimators
- 3. Asymptotic distribution of the estimators
- 4. Generalization to models with covariates
- 5. Discussion
- References
- PART III: TRUNCATED DATA AND INFERENCE
- Chapter 10. Nonparametric Bivariate Estimation with Randomly Truncated Observations
- 1. Introduction
- 2. Estimation of the bivariate distribution function
- 3. Estimation of bivariate hazard
- 4. Biv.