Cargando…

Architecting Data and Machine Learning Platforms

Detalles Bibliográficos
Autor principal: Tranquillin, Marco
Otros Autores: Lakshmanan, Valliappa, Tekiner, Firat
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol : O'Reilly Media, Incorporated, 2024.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Intro
  • Copyright
  • Table of Contents
  • Preface
  • Why Do You Need a Cloud Data Platform?
  • Who Is This Book For?
  • Organization of This Book
  • Conventions Used in This Book
  • O'Reilly Online Learning
  • How to Contact Us
  • Acknowledgments
  • Chapter 1. Modernizing Your Data Platform: An Introductory Overview
  • The Data Lifecycle
  • The Journey to Wisdom
  • Water Pipes Analogy
  • Collect
  • Store
  • Process/Transform
  • Analyze/Visualize
  • Activate
  • Limitations of Traditional Approaches
  • Antipattern: Breaking Down Silos Through ETL
  • Antipattern: Centralization of Control
  • Antipattern: Data Marts and Hadoop
  • Creating a Unified Analytics Platform
  • Cloud Instead of On-Premises
  • Drawbacks of Data Marts and Data Lakes
  • Convergence of DWHs and Data Lakes
  • Hybrid Cloud
  • Reasons Why Hybrid Is Necessary
  • Challenges of Hybrid Cloud
  • Why Hybrid Can Work
  • Edge Computing
  • Applying AI
  • Machine Learning
  • Uses of ML
  • Why Cloud for AI?
  • Cloud Infrastructure
  • Democratization
  • Real Time
  • MLOps
  • Core Principles
  • Summary
  • Chapter 2. Strategic Steps to Innovate with Data
  • Step 1: Strategy and Planning
  • Strategic Goals
  • Identify Stakeholders
  • Change Management
  • Step 2: Reduce Total Cost of Ownership by Adopting a Cloud Approach
  • Why Cloud Costs Less
  • How Much Are the Savings?
  • When Does Cloud Help?
  • Step 3: Break Down Silos
  • Unifying Data Access
  • Choosing Storage
  • Semantic Layer
  • Step 4: Make Decisions in Context Faster
  • Batch to Stream
  • Contextual Information
  • Cost Management
  • Step 5: Leapfrog with Packaged AI Solutions
  • Predictive Analytics
  • Understanding and Generating Unstructured Data
  • Personalization
  • Packaged Solutions
  • Step 6: Operationalize AI-Driven Workflows
  • Identifying the Right Balance of Automation and Assistance
  • Building a Data Culture
  • Populating Your Data Science Team
  • Step 7: Product Management for Data
  • Applying Product Management Principles to Data
  • 1. Understand and Maintain a Map of Data Flows in the Enterprise
  • 2. Identify Key Metrics
  • 3. Agreed Criteria, Committed Roadmap, and Visionary Backlog
  • 4. Build for the Customers You Have
  • 5. Don't Shift the Burden of Change Management
  • 6. Interview Customers to Discover Their Data Needs
  • 7. Whiteboard and Prototype Extensively
  • 8. Build Only What Will Be Used Immediately
  • 9. Standardize Common Entities and KPIs
  • 10. Provide Self-Service Capabilities in Your Data Platform
  • Summary
  • Chapter 3. Designing Your Data Team
  • Classifying Data Processing Organizations
  • Data Analysis-Driven Organization
  • The Vision
  • The Personas
  • The Technological Framework
  • Data Engineering-Driven Organization
  • The Vision
  • The Personas
  • The Technological Framework
  • Data Science-Driven Organization
  • The Vision
  • The Personas
  • The Technological Framework
  • Summary
  • Chapter 4. A Migration Framework