Cargando…

PyTorch ultimate 2023 : from basics to cutting-edge.

PyTorch is a Python framework developed by Facebook to develop and deploy deep learning models. It is one of the most popular deep-learning frameworks nowadays. You will begin with learning the deep learning concept. Dive deeper into tensor handling, acquiring the finesse to create and manipulate te...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2023.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000ngm a22000007i 4500
001 OR_on1402180551
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 231010s2023 xx 000 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA 
020 |a 9781801070089  |q (electronic video) 
020 |a 1801070083  |q (electronic video) 
035 |a (OCoLC)1402180551 
037 |a 9781801070089  |b O'Reilly Media 
050 4 |a QA76.73.P98 
082 0 4 |a 006.3/2  |2 23/eng/20231010 
049 |a UAMI 
245 0 0 |a PyTorch ultimate 2023 :  |b from basics to cutting-edge. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2023. 
300 |a 1 online resource (1 video file (17 hr., 39 min.)) :  |b sound, color. 
306 |a 173900 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Bert Gollnick, presenter. 
500 |a "Updated September 2023." 
520 |a PyTorch is a Python framework developed by Facebook to develop and deploy deep learning models. It is one of the most popular deep-learning frameworks nowadays. You will begin with learning the deep learning concept. Dive deeper into tensor handling, acquiring the finesse to create and manipulate tensors while leveraging PyTorch's automatic gradient calculation through Autograd. Then transition to modeling by constructing linear regression models from scratch. After that, you will dive deep into classification models, mastering both multilabel and multiclass. You will then see the theory behind object detection and acquire the prowess to build object detection models. Embrace the cutting edge with YOLO v7, YOLO v8, and faster RCNN, and unleash the potential of pre-trained models and transfer learning. Delve into RNNs and look at recommender systems, unlocking matrix factorization techniques to provide personalized recommendations. Refine your skills in model debugging and deployment, where you will debug models using hooks, and navigate the strategies for both on-premise and cloud deployment. Finally, you will explore ChatGPT, ResNet, and Extreme Learning Machines. By the end of this course, you will have learned the key concepts, models, and techniques, and have the confidence to craft and deploy robust deep-learning solutions. What You Will Learn Grasp deep learning concepts and install tools/packages/IDE/libraries Master CNN theory, image classification, layer dimensions, and transformations Dive into audio classification using torchaudio and spectrograms Do object detection with the help of YOLO v7, YOLO v8, and Faster RCNN Learn word embeddings, sentiment analysis, and pre-trained NLP models Deploy models using Google Cloud and other strategies Audience This course is ideal for Python developers and data enthusiasts seeking to expand their skills. This will also benefit aspiring data scientists, machine learning engineers, AI enthusiasts, and anyone intrigued by the transformative potential of deep learning. Whether you are a beginner or possess some prior knowledge, this course offers a smooth progression that will empower you to develop, deploy, and innovate with deep learning models using PyTorch. Basic Python knowledge is required to fully engage with the material. About The Author Bert Gollnick: Bert Gollnick is a proficient data scientist with substantial domain knowledge in renewable energies, particularly wind energy. With a rich background in aeronautics and economics, Bert brings a unique perspective to the field. Currently, Bert holds a significant role at a leading wind turbine manufacturer, leveraging his expertise to contribute to innovative solutions. For several years, Bert has been a dedicated instructor, offering comprehensive training in data science and machine learning using R and Python. The core interests of Bert lie at the crossroads of machine learning and data science, reflecting a commitment to advancing these disciplines. 
588 |a Online resource; title from title details screen (O'Reilly, viewed October 10, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
700 1 |a Gollnick, Bert,  |e presenter. 
710 2 |a Packt Publishing,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781801070089/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP