Cargando…

Applied math for data science.

With the availability of data, there is a growing demand for talent who can analyze and make sense of it. This makes practical math all the more important because it helps infer insights from data. However, mathematics comprises many topics, and it is hard to identify which ones are applicable and r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, Inc., [2023]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1398234912
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230919s2023 xx 342 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d ORMDA  |d OCLKB 
019 |a 1398182051 
024 8 |a 0636920895664 
035 |a (OCoLC)1398234912  |z (OCoLC)1398182051 
037 |a 0636920895664  |b O'Reilly Media 
050 4 |a QA76.9.D343 
082 0 4 |a 006.312  |2 23/eng/20230919 
049 |a UAMI 
245 0 0 |a Applied math for data science. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media, Inc.,  |c [2023] 
300 |a 1 online resource (1 video file (5 hr., 42 min.)) :  |b sound, color. 
306 |a 054200 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Thomas Nield, presenter. 
520 |a With the availability of data, there is a growing demand for talent who can analyze and make sense of it. This makes practical math all the more important because it helps infer insights from data. However, mathematics comprises many topics, and it is hard to identify which ones are applicable and relevant for a data science career. Knowing these essential math topics is key to integrating knowledge across data science, statistics, and machine learning. In this course, learners will delve into a carefully curated list of mathematical topics to jumpstart proficiency in areas of mathematics that they will be able to apply immediately. They will grasp the fundamentals of probability, statistics, hypothesis testing, linear algebra, linear regression, classification models, and practical calculus. Along the way they will integrate this knowledge into practical applications for real-world problems. What you'll learn and how you can apply it Gain a fundamental grasp of calculus, linear algebra, probability, statistics, and supervised machine learning. Apply mathematical fundamental principles in Python using standard mathematical libraries like NumPy and SymPy. Integrate multiple applied mathematical disciplines like linear algebra and calculus to perform tasks like gradient descent. This course is for you because... You're a budding data science professional who wants to build foundational knowledge in essential math concepts and how they apply to probability, statistics, and machine learning. You're a programmer using data science and machine learning libraries and want to understand the math and probability principles behind them. You're managing a data science team and want to have a fundamental understanding of techniques used on the field. Prerequisites: Beginner knowledge of Python (if-then conditionals, for loops, lists and other collections). 
588 |a Online resource; title from title details screen (O'Reilly, viewed September 19, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining  |x Mathematics. 
650 0 |a Mathematics. 
650 0 |a Machine learning  |x Mathematics. 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
700 1 |a Nield, Thomas  |c (Computer programmer),  |e presenter. 
710 2 |a O'Reilly (Firm),  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920895664/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |b OCKB  |z ProQuest.ormac,c8edc237-79c6-499f-8dda-c03a039f8cd1-emi 
994 |a 92  |b IZTAP