Cargando…

AI Superstream. Data-centric AI.

Over the past decade, the field of AI has achieved incredible results by focusing on building and training powerful deep learning models, from convolutional neural networks to state-of-the-art transformers. While the results of this model-centric approach have been inspiring, a growing number of exp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, Inc., [2023]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000ngm a22000007i 4500
001 OR_on1398232034
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230919s2023 xx 229 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA 
024 8 |a 0636920942832 
035 |a (OCoLC)1398232034 
037 |a 0636920942832  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230919 
049 |a UAMI 
245 0 0 |a AI Superstream.  |p Data-centric AI. 
246 3 |a Artificial Intelligence Superstream.  |p Data-centric artificial intellegence. 
246 3 0 |a Data-centric AI 
246 3 |a Data-centric artificial intellegence 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media, Inc.,  |c [2023] 
300 |a 1 online resource (1 video file (3 hr., 49 min.)) :  |b sound, color. 
306 |a 034900 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Fabiana Clemente, Andrew Ng, Vijay Janapa Reddi, Emeli Dral, Atindriyo Sanyal, Manuela Veloso, Bernease Herman, Kevin McNamara, presenters. 
520 |a Over the past decade, the field of AI has achieved incredible results by focusing on building and training powerful deep learning models, from convolutional neural networks to state-of-the-art transformers. While the results of this model-centric approach have been inspiring, a growing number of experts have recognized the importance of ensuring the quality of the data used to train these models in order to build real-world machine learning systems that address the business and social needs of today. AI pioneer Andrew Ng has spearheaded the effort to move away from a model-centric approach to what he calls a "data-centric" approach to solving today's AI challenges. Data-centric AI renews focus on improving the data that makes AI systems work, through data iterability and quality, by embracing programmatic approaches to data labeling and curation, and by recentering subject matter experts as key players within the AI system development process. If you're a data scientist, machine learning engineer, or another decision maker overseeing the development and deployment of machine learning systems and you've already experienced the limits of a model-centric approach, this event is for you. Join us for expert-led sessions to discover the untapped potential of data-centric AI. What you'll learn and how you can apply it Understand the principles of data-centric AI and how they can improve your machine learning systems Learn how to enhance your machine learning system through data iterability and quality, data labeling and curation, and by recentering subject matter experts This recording of a live event is for you because... You're working with data for machine learning systems as a data scientist, data/machine learning engineer, data/machine learning architect, or machine learning team leader. You want to leverage your data effectively and efficiently to get the most out of your machine learning system. Prerequisites Basic knowledge of machine learning systems Recommended follow-up: Read Training Data for Machine Learning (early release book) Read Practical Weak Supervision (book) Watch Best Practices for Automated Data Labeling in NLP (event video) Please note that slides or supplemental materials are not available for download from this recording. Resources are only provided at the time of the live event. 
588 |a Online resource; title from title details screen (O'Reilly, viewed September 19, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
700 1 |a Clemente, Fabiana,  |e presenter. 
700 1 |a Ng, Andrew Y.,  |d 1976-  |e presenter. 
700 1 |a Janapa Reddi, Vijay,  |e presenter. 
700 1 |a Dral, Emeli,  |e presenter. 
700 1 |a Sanyal, Atindriyo,  |e presenter. 
700 1 |a Veloso, Manuela,  |e presenter. 
700 1 |a Herman, Bernease,  |e presenter. 
700 1 |a McNamara, Kevin,  |e presenter. 
710 2 |a O'Reilly (Firm),  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920942832/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP