Cargando…

LOW-CODE AI a practical project-driven introduction to machine learning /

Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Stripling, Gwendolyn (Autor), Abel, Michael (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Inc., 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_on1397799769
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230918s2023 cau o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d N$T 
019 |a 1398279086 
020 |a 9781098146795  |q (electronic bk.) 
020 |a 1098146794  |q (electronic bk.) 
020 |z 1098146824 
020 |z 9781098146825 
035 |a (OCoLC)1397799769  |z (OCoLC)1398279086 
037 |a 9781098146818  |b O'Reilly Media 
050 4 |a Q335 
082 0 4 |a 006.3  |2 23/eng/20230919 
049 |a UAMI 
100 1 |a Stripling, Gwendolyn,  |e author. 
245 1 0 |a LOW-CODE AI  |h [electronic resource] :  |b a practical project-driven introduction to machine learning /  |c Gwendolyn Stripling & Michael Abel. 
246 3 |a Low-code artificial intelligence 
260 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c 2023. 
300 |a 1 online resource 
520 |a Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems. Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications. You'll learn how to: Distinguish between structured and unstructured data and the challenges they present Visualize and analyze data Preprocess data for input into a machine learning model Differentiate between the regression and classification supervised learning models Compare different ML model types and architectures, from no code to low code to custom training Design, implement, and tune ML models Export data to a GitHub repository for data management and governance. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
700 1 |a Abel, Michael,  |e author. 
776 0 8 |i Print version:  |z 1098146824  |z 9781098146825  |w (OCoLC)1375288944 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098146818/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 20496769 
938 |a YBP Library Services  |b YANK  |n 305718513 
938 |a EBSCOhost  |b EBSC  |n 3680151 
994 |a 92  |b IZTAP