Data Wrangling with SQL A Hands-On Guide to Manipulating, Wrangling, and Engineering Data Using SQL /
Become a data wrangling expert and make well-informed decisions by effectively utilizing and analyzing raw unstructured data in a systematic manner Purchase of the print or Kindle book includes a free PDF eBook Key Features Implement query optimization during data wrangling using the SQL language wi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham :
Packt Publishing, Limited,
2023.
|
Edición: | 1st edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright and Credits
- Dedication
- Contributors
- Table of Contents
- Preface
- Part 1:Data Wrangling Introduction
- Chapter 1: Database Introduction
- Getting started
- Establishing the foundation
- Efficient data organization
- Data integrity and consistency
- Technical requirements
- Decoding database structures
- relational and non-relational
- What is a database?
- Types of databases
- Tables and relationships
- The SQL CREATE DATABASE statement
- The SQL CREATE TABLE statement
- SQL DROP TABLE versus TRUNCATE TABLE
- SQL ALTER TABLE
- SQL constraints
- SQL keys
- Database relationships
- Comparing database normalization and denormalization
- Normalization
- Types of normalization
- Denormalization
- When to apply denormalization
- Disadvantages of denormalization
- Summary
- Practical exercises
- Practical exercise 1
- Practical exercise 2
- Practical exercise 3
- Practical exercise 4
- Chapter 2: Data Profiling and Preparation before Data Wrangling
- What is data wrangling?
- Data wrangling steps
- The importance of data wrangling
- Benefits of data wrangling
- Data wrangling use cases
- Business use cases
- Data capture
- How does data get captured?
- Data-capturing techniques
- Web scraping
- Structured versus unstructured data
- Paid-for versus free data-wrangling tools
- Data profiling
- Data profiling types
- Data profiling techniques
- Practical exercise
- Step 1
- Discovery
- Step 2
- Structuring
- Step 3
- Cleaning
- Step 4
- Enriching
- Step 5
- Validating
- Step 6
- Publishing
- Summary
- Part 2:Data Wrangling Techniques Using SQL
- Chapter 3: Data Wrangling on String Data Types
- SQL data types
- Numeric data types
- Date and time data types
- String data type
- SQL string functions
- RIGHT()
- LEFT()
- LEN()
- TRIM()
- RTRIM()
- LTRIM()
- RPAD()
- LPAD()
- REPLACE()
- REVERSE()
- SUBSTRING()
- CAST()
- CONCATENATE()
- CONCATENATE_WS()
- UPPER function
- LOWER function
- INITCAP function
- INSTR function
- Summary
- Practical exercises
- Practical exercise 1
- Practical exercise 2
- Practical exercise 3
- Practical exercise 4
- Chapter 4: Data Wrangling on the DATE Data Type
- SQL DATE data type functions
- EXTRACT
- DATEDIFF()
- TIMEDIFF()
- DATE_ADD()
- DATE_SUB()
- DATE_FORMAT()
- STR_TO_DATE()
- Extracting the current date and time
- Summary
- Chapter 5: Handling NULL Values
- The impact of missing data and NULL values on data analysis
- Understanding the importance of data validation and cleaning before analyzing data
- Identifying NULL/missing values
- NULL values versus zero values
- Using the IS NULL and IS NOT NULL operators to filter and select data with NULL values
- IS NULL() and IS NOT NULL()
- scenario
- Using the COALESCE and IFNULL functions to replace NULL values with a default value
- IFNULL()
- COALESCE()
- IS NULL versus = NULL
- Summary