Cargando…

Responsible AI in the Enterprise : Practical AI Risk Management for Explainable, Auditable, and Safe Models with Hyperscalers and Azure OpenAI /

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn ethical AI principles, frameworks, and governance Understand the concepts of fairness assessment and bi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masood, Adnan
Otros Autores: Dawe, Heather
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2023.
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1392344813
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 230805s2023 enka ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d ORMDA  |d EBLCP  |d OCLCQ  |d N$T  |d YDX  |d IEEEE  |d OCLCO  |d TOH 
019 |a 1392044479 
020 |a 9781803249667 
020 |a 1803249668 
029 1 |a AU@  |b 000074964668 
035 |a (OCoLC)1392344813  |z (OCoLC)1392044479 
037 |a 9781803230528  |b O'Reilly Media 
037 |a 10251167  |b IEEE 
050 4 |a Q335 
082 0 4 |a 006.3  |2 23/eng/20230808 
049 |a UAMI 
100 1 |a Masood, Adnan. 
245 1 0 |a Responsible AI in the Enterprise :  |b Practical AI Risk Management for Explainable, Auditable, and Safe Models with Hyperscalers and Azure OpenAI /  |c Adnan Masood, Heather Dawe. 
246 3 |a Responsible artificial intelligence in the enterprise 
250 |a First edition. 
264 1 |a Birmingham :  |b Packt Publishing, Limited,  |c 2023. 
300 |a 1 online resource (xxii, 291 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Description based upon print version of record. 
504 |a Includes bibliographical references (page 274) and index. 
520 |a Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn ethical AI principles, frameworks, and governance Understand the concepts of fairness assessment and bias mitigation Introduce explainable AI and transparency in your machine learning models Book Description Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you'll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You'll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You'll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you'll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You'll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you'll be well-equipped with tools and techniques to create transparent and accountable machine learning models. What you will learn Understand explainable AI fundamentals, underlying methods, and techniques Explore model governance, including building explainable, auditable, and interpretable machine learning models Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction Build explainable models with global and local feature summary, and influence functions in practice Design and build explainable machine learning pipelines with transparency Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms Who this book is for This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations. 
505 0 |a Table of Contents A Primer on Explainable and Ethical AI Algorithms Gone Wild - Bias's Greatest Hits Opening the Algorithmic Blackbox Operationalizing Model Monitoring Model Governance - Audit, and Compliance Standards & Recommendations Enterprise Starter Kit for Fairness, Accountability and Transparency Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360 Fairness in AI System with Microsoft FairLearn Fairness Assessment and Bias Mitigation with FairLearn and Responsible AI Toolbox Foundational Models and Azure OpenAI. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence  |x Industrial applications. 
650 0 |a Artificial intelligence  |x Moral and ethical aspects. 
650 6 |a Intelligence artificielle  |x Applications industrielles. 
650 6 |a Intelligence artificielle  |x Aspect moral. 
655 0 |a Electronic books. 
700 1 |a Dawe, Heather. 
776 0 8 |i Print version:  |a Masood, Adnan  |t Responsible AI in the Enterprise  |d Birmingham : Packt Publishing, Limited,c2023  |z 9781803230528 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803230528/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30670773 
938 |a YBP Library Services  |b YANK  |n 305620951 
938 |a EBSCOhost  |b EBSC  |n 3656539 
994 |a 92  |b IZTAP