Cargando…

Enhancing Deep Learning with Bayesian Inference Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python /

Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Benatan, Matt
Otros Autores: Gietema, Jochem, Schneider, Marian
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2023.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1389612951
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 230708s2023 enk o 000 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d ORMDA  |d EBLCP  |d OCLCQ  |d UPM  |d IEEEE 
020 |a 9781803237251 
020 |a 1803237252 
029 1 |a AU@  |b 000074929845 
035 |a (OCoLC)1389612951 
037 |a 9781803246888  |b O'Reilly Media 
037 |a 10251213  |b IEEE 
050 4 |a Q325.73 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Benatan, Matt. 
245 1 0 |a Enhancing Deep Learning with Bayesian Inference  |h [electronic resource] :  |b Create More Powerful, Robust Deep Learning Systems with Bayesian Deep Learning in Python /  |c Dr. Matt Benatan, Jochem Gietema, Dr. Marian Schneider. 
250 |a 1st edition. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2023. 
300 |a 1 online resource (386 p.) 
500 |a Description based upon print version of record. 
520 |a Develop Bayesian Deep Learning models to help make your own applications more robust. Key Features Gain insights into the limitations of typical neural networks Acquire the skill to cultivate neural networks capable of estimating uncertainty Discover how to leverage uncertainty to develop more robust machine learning systems Book Description Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care. Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios. By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems. What you will learn Discern the advantages and disadvantages of Bayesian inference and deep learning Become well-versed with the fundamentals of Bayesian Neural Networks Understand the differences between key BNN implementations and approximations Recognize the merits of probabilistic DNNs in production contexts Master the implementation of a variety of BDL methods in Python code Apply BDL methods to real-world problems Evaluate BDL methods and choose the most suitable approach for a given task Develop proficiency in dealing with unexpected data in deep learning applications Who this book is for This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. 
505 0 |a Table of Contents Bayesian Inference in the Age of Deep Learning Fundamentals of Bayesian Inference Fundamentals of Deep Learning Introducing Bayesian Deep Learning Principled Approaches for Bayesian Deep Learning Using the Standard Toolbox for Bayesian Deep Learning Practical considerations for Bayesian Deep Learning Applying Bayesian Deep Learning Next Steps in Bayesian Deep Learning. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning)  |x Mathematical models. 
650 0 |a Neural networks (Computer science)  |x Mathematical models. 
650 0 |a Bayesian field theory. 
700 1 |a Gietema, Jochem. 
700 1 |a Schneider, Marian. 
776 0 8 |i Print version:  |a Benatan, Matt  |t Enhancing Deep Learning with Bayesian Inference  |d Birmingham : Packt Publishing, Limited,c2023  |z 9781803246888 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803246888/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30616933 
994 |a 92  |b IZTAP