Cargando…

Causal Inference and Discovery in Python : Unlock the Secrets of Modern Causal Machine Learning with Dowhy, EconML, Pytorch and More /

Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Purchase of the print or Kindle book includes a free PDF eBook Key Features Examine Pearlian causal concepts such as stru...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Molak, Aleksander
Otros Autores: Jaokar, Ajit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1381712711
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230610s2023 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d N$T  |d ORMDA  |d YDX  |d UKMGB  |d UKAHL  |d OCLCF  |d IEEEE  |d OCLCO 
015 |a GBC3C3368  |2 bnb 
016 7 |a 021086912  |2 Uk 
020 |a 1804611735  |q electronic book 
020 |a 9781804611739  |q (electronic bk.) 
029 1 |a UKMGB  |b 021086912 
035 |a (OCoLC)1381712711 
037 |a 9781804612989  |b O'Reilly Media 
037 |a 10251331  |b IEEE 
050 4 |a Q325.5  |b .M65 2023 
082 0 4 |a 006.3/1  |2 23/eng/20230612 
049 |a UAMI 
100 1 |a Molak, Aleksander. 
245 1 0 |a Causal Inference and Discovery in Python :  |b Unlock the Secrets of Modern Causal Machine Learning with Dowhy, EconML, Pytorch and More /  |c Aleksander Molak ; foreword by Ajit Jaokar. 
264 1 |a Birmingham :  |b Packt Publishing,  |c [2023] 
300 |a 1 online resource (456 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from digital title page (viewed on June 23, 2023). 
505 0 |a Table of ContentsCausality -- Hey, We Have Machine Learning, So Why Even Bother?Judea Pearl and the Ladder of CausationRegression, Observations, and InterventionsGraphical ModelsForks, Chains, and ImmoralitiesNodes, Edges, and Statistical (In)dependenceThe Four-Step Process of Causal InferenceCausal Models -- Assumptions and ChallengesCausal Inference and Machine Learning -- from Matching to Meta-LearnersCausal Inference and Machine Learning -- Advanced Estimators, Experiments, Evaluations, and MoreCausal Inference and Machine Learning -- Deep Learning, NLP, and BeyondCan I Have a Causal Graph, Please?Causal Discovery and Machine Learning -- from Assumptions to ApplicationsCausal Discovery and Machine Learning -- Advanced Deep Learning and BeyondEpilogue. 
520 |a Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data Purchase of the print or Kindle book includes a free PDF eBook Key Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methods Book DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality. You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more. What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefit Who this book is for This book is for machine learning engineers, data scientists, and machine learning researchers looking to extend their data science toolkit and explore causal machine learning. It will also help developers familiar with causality who have worked in another technology and want to switch to Python, and data scientists with a history of working with traditional causality who want to learn causal machine learning. It’s also a must-read for tech-savvy entrepreneurs looking to build a competitive edge for their products and go beyond the limitations of traditional machine learning. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Jaokar, Ajit. 
776 0 8 |i Print version:  |a Molak, Aleksander  |t Causal Inference and Discovery in Python  |d Birmingham : Packt Publishing, Limited,c2023 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804612989/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41506313 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30587100 
938 |a EBSCOhost  |b EBSC  |n 3622846 
994 |a 92  |b IZTAP