Cargando…

Machine learning with R : learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data /

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition, provides a hands-on, accessible, and readable guide to applyin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lantz, Brett (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2023.
Edición:Fourth edition.
Colección:Expert insight.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1381263012
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 230606s2023 enka o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d YDX  |d OCLCF 
019 |a 1380466738 
020 |z 9781801071321 
020 |a 9781801076050  |q electronic book 
020 |a 1801076057  |q electronic book 
035 |a (OCoLC)1381263012  |z (OCoLC)1380466738 
037 |a 9781801071321  |b O'Reilly Media 
050 4 |a Q325.5  |b .L36 2023 
082 0 4 |a 006.3/1  |2 23/eng/20230606 
049 |a UAMI 
100 1 |a Lantz, Brett,  |e author. 
245 1 0 |a Machine learning with R :  |b learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data /  |c Brett Lantz. 
250 |a Fourth edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2023. 
300 |a 1 online resource (762 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Expert insight. 
500 |a Includes index. 
520 |a Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Fourth Edition, provides a hands-on, accessible, and readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to know for data pre-processing, uncovering key insights, making new predictions, and visualizing your findings. This 10th Anniversary Edition features several new chapters that reflect the progress of machine learning in the last few years and help you build your data science skills and tackle more challenging problems, including making successful machine learning models and advanced data preparation, building better learners, and making use of big data. You'll also find this classic R data science book updated to R 4.0.0 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Whether you're looking to take your first steps with R for machine learning or making sure your skills and knowledge are up to date, this is an unmissable read that will help you find powerful new insights in your data. 
588 |a Description based upon online resource; title from PDF title page (viewed July 3rd, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language)  |v Handbooks, manuals, etc. 
650 0 |a Machine learning  |x Statistical methods  |v Handbooks, manuals, etc. 
650 7 |a Machine learning  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01004801 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
655 0 |a Electronic books. 
655 7 |a Handbooks and manuals.  |2 fast  |0 (OCoLC)fst01423877 
776 0 8 |i Print version:  |a Lantz, Brett  |t Machine Learning with R  |d Birmingham : Packt Publishing, Limited,c2023  |z 9781801071321 
830 0 |a Expert insight. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801071321/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30547398 
994 |a 92  |b IZTAP