Cargando…

Building regression models with SAS : a guide for data scientists /

Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rodriguez, Robert N. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cary, NC : SAS Institute, 2023.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1379844930
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 230524s2023 ncu ob 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d YDX  |d UKAHL  |d OCLCF  |d OCLCQ  |d UPM  |d OCLCO 
019 |a 1379761582  |a 1395705475 
020 |a 9781951684006  |q (electronic bk.) 
020 |a 1951684001  |q (electronic bk.) 
020 |z 9781635261554 
020 |a 1635261902  |q (electronic bk.) 
020 |a 9781635261905  |q (electronic bk.) 
035 |a (OCoLC)1379844930  |z (OCoLC)1379761582  |z (OCoLC)1395705475 
037 |a 9781951684006  |b O'Reilly Media 
050 4 |a QA276.4 
082 0 4 |a 005.5/5  |2 23/eng/20230524 
049 |a UAMI 
100 1 |a Rodriguez, Robert N.,  |e author. 
245 1 0 |a Building regression models with SAS :  |b a guide for data scientists /  |c Robert N. Rodriguez. 
250 |a [First edition]. 
264 1 |a Cary, NC :  |b SAS Institute,  |c 2023. 
300 |a 1 online resource (464 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic concepts, essential syntax, and examples using new procedures in both SAS/STAT and SAS Viya. Building Regression Models with SAS is an essential guide to learning about a variety of models that provide interpretability as well as predictive performance. 
505 0 |a Intro -- Contents -- Motivation for the Book -- Audiences for the Book -- Knowledge Prerequisites for the Book -- Software Prerequisites for the Book -- What the Book Does Not Cover -- Acknowledgments -- Introduction -- Model Building at the Crossroads of Machine Learning and Statistics -- Overview of Procedures for Building Regression Models -- Practical Benefits -- When Does Interpretability Matter? -- When Should You Use the Procedures in This Book? -- How to Read This Book -- General Linear Models -- Building General Linear Models: Concepts -- Example: Predicting Network Activity 
505 8 |a Essential Aspects of Regression Model Building -- Notation and Terminology for General Linear Models -- Parameter Estimation -- The Bias-Variance Tradeoff for Prediction -- Model Flexibility and Degrees of Freedom -- Assessment and Minimization of Prediction Error -- Summary -- Building General Linear Models: Issues -- Problems with Data-Driven Model Selection -- Example: Simulation of Selection Bias -- Freedman's Paradox -- Summary -- Building General Linear Models: Methods -- Best-Subset Regression -- Sequential Selection Methods -- Shrinkage Methods -- Summary 
505 8 |a Building General Linear Models: Procedures -- Introduction to the GLMSELECT Procedure -- Specifying the Candidate Effects and the Selection Method -- Controlling the Selection Method -- Which Selection Methods and Criteria Should You Use? -- Comparing Selection Criteria -- Forced Inclusion of Model Effects -- Example: Predicting the Close Rate of Retail Stores -- Example: Building a Model with Forward Selection -- Example: Building a Model with the Lasso and SBC -- Example: Building a Model with the Lasso and Cross Validation -- Example: Building a Model with the Lasso and Validation Data 
505 8 |a Example: Building a Model with the Adaptive Lasso -- Example: Building a Model with the Group Lasso -- Using the REG Procedure for Best-Subset Regression -- Example: Finding the Best Model for Close Rate -- Example: Best-Subset Regression with Categorical Predictors -- Introduction to the REGSELECT Procedure -- Example: Defining a CAS Session and Loading Data -- Example: Differences from the GLMSELECT Procedure -- Example: Building a Model with Forward Swap Selection -- Using the Final Model to Score New Data -- Summary -- Building General Linear Models: Collinearity 
505 8 |a Example: Modeling the Effect of Air Pollution on Mortality -- Detecting Collinearity -- Dimension Reduction Using Variable Clustering -- Ridge Regression -- The Elastic Net Method -- Principal Components Regression -- Partial Least Squares Regression -- Conclusions for Air Pollution Example -- Summary -- Building General Linear Models: Model Averaging -- Approaches to Model Averaging -- Using the GLMSELECT Procedure for Model Averaging -- Bootstrap Model Averaging with Stepwise Regression -- Refitting to Build a Parsimonious Model -- Model Averaging with Akaike Weights -- Summary 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SAS (Computer file) 
630 0 7 |a SAS (Computer file)  |2 fast 
650 0 |a Computer programming. 
650 6 |a Programmation (Informatique) 
650 7 |a computer programming.  |2 aat 
650 7 |a Computer programming  |2 fast 
655 0 |a Electronic books. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781951684006/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41475215 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7250872 
938 |a YBP Library Services  |b YANK  |n 20217145 
994 |a 92  |b IZTAP