Cargando…

Designing machine learning systems.

The engineering domain is one of the fastest growing areas in the field of machine learning. Machine learning powers advanced and seamless features such as user recommendations, predictions, image and speech recognition, medical diagnosis, and even fun applications like creating art based on user in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, Inc., [2023]
Edición:[First edition].
Colección:AI superstream (O'Reilly (Firm)).
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1379799186
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230523s2023 xx 185 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
024 8 |a 0636920936091 
035 |a (OCoLC)1379799186 
037 |a 0636920936091  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230523 
049 |a UAMI 
245 0 0 |a Designing machine learning systems. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media, Inc.,  |c [2023] 
300 |a 1 online resource (1 video file (3 hr., 5 min.)) :  |b sound, color. 
306 |a 030500 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
490 1 |a AI Superstream 
511 0 |a Shingai Manjengwa, Tim Long, Chip Huyen, Danny Farah, Devin Singh, Mohamed Hibat-Allah, Patricia Thaine, Parinaz Sobhani, presenters. 
520 |a The engineering domain is one of the fastest growing areas in the field of machine learning. Machine learning powers advanced and seamless features such as user recommendations, predictions, image and speech recognition, medical diagnosis, and even fun applications like creating art based on user input. All this is powered by a plethora of systems that require well-trained engineers to design, implement, and use. But technical know-how is only part of the equation. In addition to the wide variety of technologies ML engineers must learn (including TensorFlow, PyTorch, AWS, Azure, BigQuery and many others), they have to deal with challenges like lack of data or data that's poorly labeled, fit, or collected to begin with. Join some of the best minds working in the field to learn how to tackle the challenges of ingesting, labeling, and applying data to the correctly identified machine learning problems. Whether you're a new ML engineer or a seasoned pro, you'll gain tips and insights that will help you design systems that allow for advanced analytics, predictions, and diagnoses. What you'll learn and how you can apply it Learn how to work with LLMs to achieve optimized results Discover how to design data and ML systems for trust and scalability Understand the challenges and opportunities in designing for industry This recording of a live event is for you because... You're a data engineer, ML engineer, or data scientist. You want to effectively approach the data lifecycle from ingestion to labeling to solving problems with machine learning. Recommended follow-up: Read Designing Machine Learning Systems (book) Read Fundamentals of Data Engineering (book) Read Machine Learning Design Patterns (book). 
588 |a Online resource; title from title details screen (O'Reilly, viewed May 23, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
655 7 |a Instructional films  |2 fast 
655 7 |a Internet videos  |2 fast 
655 7 |a Nonfiction films  |2 fast 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
655 7 |a Films autres que de fiction.  |2 rvmgf 
655 7 |a Vidéos sur Internet.  |2 rvmgf 
700 1 |a Manjengwa, Shingai,  |e presenter. 
700 1 |a Long, Tim,  |e presenter. 
700 1 |a Huyen, Chip,  |e presenter. 
700 1 |a Farah, Danny,  |e presenter. 
700 1 |a Singh, Devin,  |e presenter. 
700 1 |a Hibat-Allah, Mohamed,  |e presenter. 
700 1 |a Thaine, Patricia,  |e presenter. 
700 1 |a Sobhani, Parinaz,  |e presenter. 
710 2 |a O'Reilly (Firm),  |e publisher. 
830 0 |a AI superstream (O'Reilly (Firm)). 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920936091/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP