Cargando…

Privacy-preserving machine learning /

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chang, J. Morris (Autor), Zhuang, Di (Autor), Samaraweera, Dumindu (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Shelter Island : Manning Publications, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1378658777
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230509s2022 nyua ob 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d UKAHL  |d OCLCF 
020 |a 9781617298042  |q (electronic bk.) 
020 |a 1617298042  |q (electronic bk.) 
020 |z 1617298042 
035 |a (OCoLC)1378658777 
037 |a 9781617298042  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230509 
049 |a UAMI 
100 1 |a Chang, J. Morris,  |e author. 
245 1 0 |a Privacy-preserving machine learning /  |c J. Morris Chang, Di Zhuang, Dumindu Samaraweera. 
264 1 |a Shelter Island :  |b Manning Publications,  |c 2022. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. About the Technology Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end. About the Book Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter. What's Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Authors J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. G. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Quotes A detailed treatment of differential privacy, synthetic data generation, and privacy-preserving machine-learning techniques with relevant Python examples. Highly recommended! - Abe Taha, Google A wonderful synthesis of theoretical and practical. This book fills a real need. - Stephen Oates, Allianz The definitive source for creating privacy-respecting machine learning systems. This area in data-rich environments is so important to understand! - Mac Chambers, Roy Hobbs Diamond Enterprises Covers all aspects for data privacy, with good practical examples. - Vidhya Vinay, Streamingo Solutions. 
588 |a Description based on print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Computer networks  |x Security measures. 
650 7 |a Computer networks  |x Security measures.  |2 fast  |0 (OCoLC)fst00872341 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Zhuang, Di,  |e author. 
700 1 |a Samaraweera, Dumindu,  |e author. 
776 0 8 |i Print version:  |a Chang, J. Morris.  |t Privacy-preserving machine learning.  |d Shelter Island : Manning Publications, 2022  |z 9781617298042  |w (OCoLC)1289292407 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617298042/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41410470 
994 |a 92  |b IZTAP