Deep learning in time series analysis /
"The concept of deep machine learning becomes easier to understandable by paying attention to the cyclic stochastic time series and a time series whose content is non-stationary not only within the cycles, but also over the cycles as the beat to beat variations. This book introduces original de...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Gharehbaghi, Arash, 1972- (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
CRC Press,
2023.
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
MODERN TIME SERIES FORECASTING WITH PYTHON explore industry-ready time series forecasting using modern machine learning and deep learning /
por: Manu, Joseph
Publicado: (2022) -
Working with time series : denoising and imputation frameworks to improve data density /
Publicado: (2019) -
Forecasting time series data with Prophet : build, improve, and optimize time series forecasting models using Meta's advanced forecasting tool /
por: Rafferty, Greg
Publicado: (2023) -
Computational methods and deep learning for ophthalmology /
Publicado: (2023) -
Shizen gengo shori hen /
por: Saitō, Kōki, 1984-
Publicado: (2018)