Cargando…

Hands-on graph neural networks using Python : practical techniques and architectures for building powerful graph and deep learning apps with PyTorch /

Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Labonne, Maxime (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1377285473
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230425s2023 enka ob 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d N$T  |d YDX  |d OCLCF  |d IEEEE 
019 |a 1375293238 
020 |a 9781804610701  |q electronic book 
020 |a 1804610704  |q electronic book 
020 |z 9781804617526 
035 |a (OCoLC)1377285473  |z (OCoLC)1375293238 
037 |a 9781804617526  |b O'Reilly Media 
037 |a 10251349  |b IEEE 
050 4 |a QA76.73.P98  |b L33 2023 
082 0 4 |a 005.13/3  |2 23/eng/20230425 
049 |a UAMI 
100 1 |a Labonne, Maxime,  |e author. 
245 1 0 |a Hands-on graph neural networks using Python :  |b practical techniques and architectures for building powerful graph and deep learning apps with PyTorch /  |c Maxime Labonne. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2023. 
300 |a 1 online resource (354 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery. Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you'll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps. By the end of this book, you'll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more. 
505 0 |a Table of Contents Getting Started with Graph Learning Graph Theory for Graph Neural Networks Creating Node Representations with DeepWalk Improving Embeddings with Biased Random Walks in Node2Vec Including Node Features with Vanilla Neural Networks Introducing Graph Convolutional Networks Graph Attention Networks Scaling Graph Neural Networks with GraphSAGE Defining Expressiveness for Graph Classification Predicting Links with Graph Neural Networks Generating Graphs Using Graph Neural Networks Learning from Heterogeneous Graphs Temporal Graph Neural Networks Explaining Graph Neural Networks Forecasting Traffic Using A3T-GCN Detecting Anomalies Using Heterogeneous Graph Neural Networks Building a Recommender System Using LightGCN Unlocking the Potential of Graph Neural Networks for Real-Word Applications. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Labonne, Maxime  |t Hands-On Graph Neural Networks Using Python  |d Birmingham : Packt Publishing, Limited,c2023 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804617526/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30464090 
938 |a EBSCOhost  |b EBSC  |n 3587397 
994 |a 92  |b IZTAP