Cargando…

Forecasting time series data with Prophet : build, improve, and optimize time series forecasting models using Meta's advanced forecasting tool /

Create and improve fully automated forecasts for time series data with strong seasonal effects, holidays, and additional regressors using Python. Prophet empowers Python and R developers to build scalable time series forecasts. This book will help you to implement Prophet's cutting-edge forecas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rafferty, Greg (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2023.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1376342759
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 230418s2023 enka o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |z 9781837630417 
035 |a (OCoLC)1376342759 
037 |a 9781837630417  |b O'Reilly Media 
050 4 |a QA280 
082 0 4 |a 519.5/5  |2 23/eng/20230418 
049 |a UAMI 
100 1 |a Rafferty, Greg,  |e author. 
245 1 0 |a Forecasting time series data with Prophet :  |b build, improve, and optimize time series forecasting models using Meta's advanced forecasting tool /  |c Greg Rafferty. 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2023. 
300 |a 1 online resource (282 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Create and improve fully automated forecasts for time series data with strong seasonal effects, holidays, and additional regressors using Python. Prophet empowers Python and R developers to build scalable time series forecasts. This book will help you to implement Prophet's cutting-edge forecasting techniques to model future data with high accuracy using only a few lines of code. You'll begin by exploring the evolution of time series forecasting, from basic early models to present-day advanced models. After the initial installation and setup, you'll take a deep dive into the mathematics and theory behind Prophet. You'll then cover advanced features such as visualizing your forecasts, adding holidays and trend changepoints, and handling outliers. You'll use the Fourier series to model seasonality, learn how to choose between an additive and multiplicative model, and understand when to modify each model parameter. This updated edition has a new section on modeling shocks such as COVID. Later on in the book you'll see how to optimize more complicated models with hyperparameter tuning and by adding additional regressors to the model. Finally, you'll learn how to run diagnostics to evaluate the performance of your models and discover useful features when running Prophet in production environments. By the end of this book, you'll be able to take a raw time series dataset and build advanced and accurate forecasting models with concise, understandable, and repeatable code. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781837630417/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP