Cargando…

What every engineer should know about data-driven analytics /

What Every Engineer Should Know About Data-Driven Analytics provides a comprehensive introduction to the theoretical concepts and approaches of machine learning that are used in predictive data analytics. By introducing the theory and by providing practical applications, this text can be understood...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Srinivasan, Satish Mahadevan (Autor), Laplante, Phillip A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, 2023.
Edición:1st.
Colección:What Every Engineer Should Know
ISSN
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000001i 4500
001 OR_on1376273830
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 230213s2023 flua o 000 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCF  |d ORMDA  |d TYFRS  |d UKAHL 
015 |a GBC340955  |2 bnb 
016 7 |a 020966981  |2 Uk 
019 |a 1372013559 
020 |a 9781000859720  |q ePub ebook 
020 |a 100085972X 
020 |a 9781000859690  |q PDF ebook 
020 |a 100085969X 
020 |z 9781032235431  |q hardback 
020 |z 9781032235400  |q paperback 
020 |a 9781003278177  |q (electronic bk.) 
020 |a 1003278175  |q (electronic bk.) 
020 |z 1032235438 
020 |z 1032235403 
024 8 |a 10.1201/9781003278177  |2 doi 
029 0 |a UKMGB  |b 020966981 
035 |a (OCoLC)1376273830  |z (OCoLC)1372013559 
037 |a 9781000859720  |b Ingram Content Group 
037 |a 9781000859720  |b O'Reilly Media 
050 4 |a Q325.5 
072 7 |a COM  |x 014000  |2 bisacsh 
072 7 |a COM  |x 094000  |2 bisacsh 
072 7 |a COM  |x 051230  |2 bisacsh 
072 7 |a TJFM  |2 bicssc 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Srinivasan, Satish Mahadevan,  |e author. 
245 1 0 |a What every engineer should know about data-driven analytics /  |c Satish Mahadevan Srinivasan, Phillip A. Laplante. 
250 |a 1st. 
264 1 |a Boca Raton :  |b CRC Press,  |c 2023. 
300 |a 1 online resource (260 pages) :  |b illustrations (black and white). 
336 |a text  |2 rdacontent 
336 |a still image  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 0 |a What Every Engineer Should Know 
490 0 |a ISSN 
500 |a 1. Data Collection and Cleaning. 2. Mathematical Background for Predictive Analytics. 3. Introduction to Statistics, Probability, and Information Theory for Analytics. 4. Introduction to Machine Learning. 5. Unsupervised Learning. 6. Supervised Learning. 7. Natural Language Processing for Analyzing Unstructured Data. 8. Predictive Analytics Using Deep Neural Networks. 9. Convolutional Neural Networks (CNN) for Predictive Analytics. 10. Recurrent Neural Networks (RNNs) for Predictive Analytics. 11. Recommender Systems for Predictive Analytics. 12. Architecting Big Data Analytical Pipeline. 
588 |a Description based on CIP data; resource not viewed. 
520 |a What Every Engineer Should Know About Data-Driven Analytics provides a comprehensive introduction to the theoretical concepts and approaches of machine learning that are used in predictive data analytics. By introducing the theory and by providing practical applications, this text can be understood by every engineering discipline. It offers a detailed and focused treatment of the important machine learning approaches and concepts that can be exploited to build models to enable decision making in different domains. Utilizes practical examples from different disciplines and sectors within engineering and other related technical areas to demonstrate how to go from data, to insight, and to decision making Introduces various approaches to build models that exploits different algorithms Discusses predictive models that can be built through machine learning and used to mine patterns from large datasets Explores the augmentation of technical and mathematical materials with explanatory worked examples Includes a glossary, self-assessments, and worked-out practice exercises Written to be accessible to non-experts in the subject, this comprehensive introductory text is suitable for students, professionals, and researchers in engineering and data science. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Data mining. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a COMPUTERS / Computer Science  |2 bisacsh 
650 7 |a COMPUTERS / Programming / Software Development  |2 bisacsh 
700 1 |a Laplante, Phillip A.,  |e author.  |1 https://isni.org/isni/0000000109601548. 
776 0 8 |i Print version:  |z 9781032235431 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781000859720/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH40824435 
994 |a 92  |b IZTAP