Cargando…

Solar fuels /

SOLAR FUELS In this book, you will have the opportunity to have comprehensive knowledge about the use of energy from the sun, which is our source of life, by converting it into different chemical fuels as well as catching up with the latest technology. The most important obstacle to solar meeting al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sanki, Nurdan Demirci (Editor ), Sankir, Mehmet (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : Beverly, MA : John Wiley & Sons, Inc. ; Scrivener Publishing LLC, 2023.
Colección:Advances in solar cell materials and storage
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1376179593
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230416t20232023nju o 000 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d YDX  |d UKMGB  |d DG1  |d ORMDA  |d SFB  |d OCLCF 
015 |a GBC387020  |2 bnb 
016 7 |a 021043558  |2 Uk 
020 |a 9781119752097  |q electronic book 
020 |a 1119752094  |q electronic book 
020 |a 9781119752073  |q electronic book 
020 |a 1119752078  |q electronic book 
020 |a 9781119752080  |q ePub ebook 
020 |a 1119752086 
020 |z 9781119750574  |q hardcover 
020 |z 1119750571  |q hardcover 
029 1 |a UKMGB  |b 021043558 
029 1 |a AU@  |b 000074218542 
035 |a (OCoLC)1376179593 
037 |a 9781119752080  |b Wiley, US 
037 |a 9781119750574  |b O'Reilly Media 
050 4 |a TJ810  |b .S662 2023 
082 0 4 |a 621.47  |2 23/eng/20230427 
049 |a UAMI 
245 0 0 |a Solar fuels /  |c edited by Nurdan Demirci Sankir and Mehmet Sankir. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc. ;  |a Beverly, MA :  |b Scrivener Publishing LLC,  |c 2023. 
264 4 |c Ã2023 
300 |a 1 online resource (435 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Advances in solar cell materials and storage 
588 |a Description based on online resource; title from digital title page (viewed on April 27, 2023). 
520 |a SOLAR FUELS In this book, you will have the opportunity to have comprehensive knowledge about the use of energy from the sun, which is our source of life, by converting it into different chemical fuels as well as catching up with the latest technology. The most important obstacle to solar meeting all our energy needs is that solar energy is not always accessible and, therefore, cannot be used when needed. Consequently, the conversion of solar energy into chemical energy, which has become increasingly important in recent years, is a groundbreaking topic in the field of renewable energy. This type of chemical energy is called solar fuel. Hydrogen, methanol, methane, and carbon monoxide are among the solar fuels, which can be produced via solar-thermal, artificial photosynthesis, photocatalytic or photoelectrochemical routes. Solar Fuels compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar fuel generation. Chapters are written by distinguished authors who have extensive experience in their fields. A multidisciplinary contributor profile, including chemical engineering, materials science, environmental engineering, and mechanical and aerospace engineering provides a broader point of view and coverage of the topic. Therefore, readers absolutely will have a chance to learn about not only the fundamentals, but also the various aspects of materials science and manufacturing technologies for solar fuel production. Moreover, readers from diverse fields should take advantage of this book to comprehend the impacts of solar energy conversion in chemical form. Audience The book will be of interest to a multidisciplinary group of fields in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrochemistry, electrical engineering, and mechanical and manufacturing engineering. 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Solar Thermochemical and Concentrated Solar Approaches -- Chapter 1 Materials Design Directions for Solar Thermochemical Water Splitting -- 1.1 Introduction -- 1.1.1 Hydrogen via Solar Thermolysis -- 1.1.2 Hydrogen via Solar Thermochemical Cycles -- 1.1.3 Thermodynamics -- 1.1.4 Economics -- 1.2 Theoretical Methods -- 1.2.1 Oxygen Vacancy Formation Energy -- 1.2.2 Standard Entropy of Oxygen Vacancy Formation -- 1.2.3 Stability -- 1.2.4 Structure -- 1.2.5 Kinetics -- 1.3 The State-of-the-Art Redox-Active Metal Oxide -- 1.4 Next-Generation Perovskite Redox-Active Materials -- 1.5 Materials Design Directions -- 1.5.1 Enthalpy Engineering -- 1.5.2 Entropy Engineering -- 1.5.3 Stability Engineering -- 1.6 Conclusions -- Acknowledgments -- Appendices -- Appendix A. Equilibrium Composition for Solar Thermolysis -- Appendix B. Equilibrium Composition of Ceria -- References -- Chapter 2 Solar Metal Fuels for Future Transportation -- 2.1 Introduction -- 2.1.1 Sustainable Strategies to Address Climate Change -- 2.1.2 Circular Economy -- 2.1.3 Sustainable Solar Recycling of Metal Fuels -- 2.2 Direct Combustion of Solar Metal Fuels -- 2.2.1 Stabilized Metal-Fuel Flame -- 2.2.2 Combustion Engineering -- 2.2.3 Designing Metal-Fueled Engines -- 2.3 Regeneration of Metal Fuels Through the Solar Reduction of Oxides -- 2.3.1 Thermodynamics and Kinetics of Oxides Reduction -- 2.3.2 Effect of Some Parameters on the Reduction Yield -- 2.3.2.1 Carbon-Reducing Agent -- 2.3.2.2 Catalysts and Additives -- 2.3.2.3 Mechanical Milling -- 2.3.2.4 CO Partial Pressure -- 2.3.2.5 Carrier Gas -- 2.3.2.6 Fast Preheating -- 2.3.2.7 Progressive Heating -- 2.3.3 Reverse Reoxidation of the Produced Metal Powders -- 2.3.4 Reduction of Oxides Using Concentrated Solar Power. 
505 8 |a 2.3.5 Solar Carbothermal Reduction of Magnesia -- 2.3.6 Solar Carbothermal Reduction of Alumina -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Design Optimization of a Solar Fuel Production Plant by Water Splitting With a Copper-Chlorine Cycle -- Nomenclature -- 3.1 Introduction -- 3.2 System Description -- 3.3 Mathematical Modeling and Optimization -- 3.3.1 Energy and Exergy Analyses -- 3.3.2 Economic Analysis -- 3.3.3 Multiobjective Optimization (MOO) Algorithm -- 3.4 Results and Discussion -- 3.5 Conclusions -- References -- Chapter 4 Diversifying Solar Fuels: A Comparative Study on Solar Thermochemical Hydrogen Production Versus Solar Thermochemical Energy Storage Using Co3O4 -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.3 Thermodynamics of Direct Decomposition of Water -- 4.4 A Critical Analysis of Two-Step Thermochemical Water Splitting Cycles Through the Red/Ox Properties of Co3O4 -- 4.4.1 Red/Ox Characteristics of Co3O4 Measured by Temperature-Programmed Analysis -- 4.4.2 The Role of Pt as a Reduction Promoter of Co3O4 -- 4.4.3 A Critical Analysis of the Solar Thermochemical Cycles of Water Splitting -- 4.5 Cyclic Thermal Energy Storage Using Co3O4 -- 4.5.1 Mass and Heat Transfer Effects During Red/Ox Processes -- 4.5.2 Cyclic Thermal Energy Storage Performance of Co3O4 -- 4.6 Conclusions -- Acknowledgements -- References -- Part II: Artificial Photosynthesis and Solar Biofuel Production -- Chapter 5 Shedding Light on the Production of Biohydrogen from Algae -- 5.1 Introduction -- 5.2 Hydrogen or Biohydrogen as Source of Energy -- 5.3 Hydrogen Production From Various Resources -- 5.4 Mechanism of Biological Hydrogen Production from Algae -- 5.5 Production of Hydrogen from Different Algal Species -- 5.5.1 Generation of Hydrogen in Scenedesmus obliquus -- 5.5.2 Production of Hydrogen in Chlorella vulgaris. 
505 8 |a 5.5.3 Generation of Hydrogen in Model Alga Chlamydomonas reinhardtii -- 5.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Photoelectrocatalysis Enables Greener Routes to Valuable Chemicals and Solar Fuels -- 6.1 Introduction -- 6.2 C-H Functionalization in Complex Organic Synthesis -- 6.3 Examples of Photoelectrochemical-Induced C-H Activation -- 6.4 C-C Functionalization -- 6.5 Electrochemically Mediated Photoredox Catalysis (e-PRC) -- 6.6 Interfacial Photoelectrochemistry (iPEC) -- 6.7 Reagent-Free Cross Dehydrogenative Coupling -- 6.8 Conclusion -- References -- Part III: Photocatalytic CO2 Reduction to Fuels -- Chapter 7 Graphene-Based Catalysts for Solar Fuels -- 7.1 Introduction -- 7.2 Preparation of Graphene and Its Composites -- 7.2.1 Preparation of Graphene (Oxide) -- 7.2.2 Preparation of Graphene-Based Photocatalysts -- 7.2.2.1 Hydrothermal/Solvothermal Method -- 7.2.2.2 Sol-Gel Method -- 7.2.2.3 In Situ Growth Method -- 7.3 Graphene-Based Catalyst Characterization Techniques -- 7.3.1 SEM, TEM, and HRTEM -- 7.3.2 X-Ray Techniques: XPS, XRD, XANES, XAFS, and EXAFS -- 7.3.3 Atomic Force Microscopy (AFM) -- 7.3.4 Fourier Transform Infrared Spectroscopy (FTIR) -- 7.3.5 Other Technologies -- 7.4 Graphene-Based Catalyst Performance -- 7.4.1 Photocatalytic CO2 Reduction -- 7.4.2 Hydrogen Production by Water Splitting -- 7.5 Conclusion and Future Opportunities -- Acknowledgments -- References -- Chapter 8 Advances in Design and Scale-Up of Solar Fuel Systems -- 8.1 Introduction -- 8.2 Strategies for Solar Photoreactor Design -- 8.2.1 Photocatalytic Systems -- 8.2.1.1 Slurry Photoreactor -- 8.2.1.2 Fixed Bed Photoreactor -- 8.2.1.3 Twin Photoreactor (Membrane Photoreactor) -- 8.2.1.4 Microreactor -- 8.2.2 Electrochemical System -- 8.2.2.1 CO2 Electrochemical Reactors -- 8.2.3 Photoelectrochemical (PEC) Systems. 
505 8 |a 8.3 Design Considerations for Scale-Up -- 8.4 Future Systems and Large Reactors -- 8.5 Conclusions -- References -- Part IV: Solar-Driven Water Splitting -- Chapter 9 Photocatalyst Perovskite Ferroelectric Nanostructures -- 9.1 Introduction -- 9.2 Ferroelectric Properties and Materials -- 9.3 Fundamental of Photocatalysis and Photoelectrocatalysis -- 9.3.1 Photocatalytic Production of Hydrogen Fuel -- 9.3.2 Photoelectrocatalytic Hydrogen Production -- 9.3.3 Photocatalytic Dye/Pollutant Degradation -- 9.4 Principle of Piezo/Ferroelectric Photo(electro)catalysis -- 9.5 Ferroelectric Nanostructures for Photo(electro)catalysis -- 9.6 Synthesis and Design of Nanostructured Ferroelectric Photo(electro)catalysts -- 9.6.1 Hydrothermal/Solvothermal Methods -- 9.6.2 Sol-Gel Methods -- 9.6.3 Wet Chemical and Solution Methods -- 9.6.4 Vapor Phase Deposition Methods -- 9.6.5 Electrospinning Methods -- 9.7 Photo(electro)catalytic Activities of Ferroelectric Nanostructures -- 9.7.1 Photo(electro)catalytic Activities of BiFeO3 Nanostructures and Thin Films -- 9.7.2 Photo(electro)catalytic Activities of LaFeO3 Nanostructures -- 9.7.3 Photo(electro)catalytic Activities of BaTiO3 Nanostructures -- 9.7.4 Photo(electro)catalytic Activities of SrTiO3 Nanostructures -- 9.7.5 Photo(electro)catalytic Activities of YFeO3 Nanostructures -- 9.7.6 Photo(electro)catalytic Activities of KNbO3 Nanostructures -- 9.7.7 Photo(electro)catalytic Activities of NaNbO3 Nanostructures -- 9.7.8 Photo(electro)catalytic Activities of LiNbO3 Nanostructures -- 9.7.9 Photo(electro)catalytic Activities of PbTiO3 Nanostructures -- 9.7.10 Photo(electro)catalytic Activities of ZnSnO3 Nanostructures -- 9.8 Conclusion and Perspective -- References -- Chapter 10 Solar-Driven H2 Production in PVE Systems -- 10.1 Introduction -- 10.2 Approaches for H2 Production via Solar-Driven Water Splitting. 
505 8 |a 10.3 Principle of Designing of PVE Systems for Solar-Driven Water Splitting -- 10.4 Development of PVE Systems for Solar-Driven Water Splitting -- 10.4.1 PVE Systems Based on Si PV Cells -- 10.4.2 PVE Systems Based on Group III-V Compound PV Cells -- 10.4.3 PVE Systems Based on Chalcogenide PV Cells -- 10.4.4 PVE Systems Based on Perovskite PV Cells -- 10.4.5 PVE Systems Based on Organic Heterojunction PV Cells -- 10.5 Conclusions and Future Perspective -- References -- Chapter 11 Impactful Role of Earth-Abundant Cocatalysts in Photocatalytic Water Splitting -- 11.1 Introduction -- 11.2 Categories of Cocatalysts Utilized in Photocatalytic Water Splitting -- 11.2.1 Metal and Non-Metal Cocatalysts -- 11.2.2 Metal Oxides and Hydroxides -- 11.2.3 Metal Sulfides -- 11.2.4 Metal Phosphides and Carbides -- 11.2.5 Molecular Cocatalysts -- 11.3 Factors Determining the Cocatalyst Activity -- 11.3.1 Intrinsic Properties of Cocatalysts -- 11.3.2 Interfacial Coupling of Cocatalysts With Host Semiconductors -- 11.4 Advanced Characterization Techniques for Cocatalytic Process -- 11.5 Conclusion -- Acknowledgments -- References -- Index -- EULA. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Solar energy. 
650 7 |a Solar energy.  |2 fast  |0 (OCoLC)fst01124984 
700 1 |a Sanki, Nurdan Demirci,  |e editor. 
700 1 |a Sankir, Mehmet,  |e editor. 
776 0 8 |i Print version:  |z 1119750571  |z 9781119750574  |w (OCoLC)1157554561 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119750574/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 304847330 
938 |a YBP Library Services  |b YANK  |n 304847330 
994 |a 92  |b IZTAP