Cargando…

Deep learning : computer vision for beginners using PyTorch.

Note: The course is primarily focused on teaching PyTorch and deep learning for computer vision, but it also includes a few sections on the fundamentals of Python (Sections 8-12). These optional learning sections are designed for individuals who may be new to Python or who want to refresh their know...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, [2023]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1375487590
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230411s2023 xx 438 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
019 |a 1390762180 
020 |a 9781837634286  |q (electronic video) 
020 |a 1837634289  |q (electronic video) 
035 |a (OCoLC)1375487590  |z (OCoLC)1390762180 
037 |a 9781837634286  |b O'Reilly Media 
050 4 |a Q325.73 
082 0 4 |a 006.3/1  |2 23/eng/20230411 
049 |a UAMI 
245 0 0 |a Deep learning :  |b computer vision for beginners using PyTorch. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c [2023] 
300 |a 1 online resource (1 video file (7 hr., 18 min.)) :  |b sound, color. 
306 |a 071800 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Manifold AI Learning, presenter. 
520 |a Note: The course is primarily focused on teaching PyTorch and deep learning for computer vision, but it also includes a few sections on the fundamentals of Python (Sections 8-12). These optional learning sections are designed for individuals who may be new to Python or who want to refresh their knowledge of Python basics. In this course, we will take a step-by-step method by first grasping PyTorch's fundamentals. Then, using a guide to getting free GPU for learning, you will learn how to code in GPU. You will then learn about PyTorch's AutoGrad feature and how to use it. Later, you will learn how to use PyTorch to create deep learning models and understand the fundamentals of convolutional neural networks (CNN). You will also learn how to use CNN with a real-world dataset. Additionally, the course will emphasize the fundamentals and lay the groundwork for an understanding of Python. We will also talk about the three significant Python libraries known as NumPy, Pandas, and Matplotlib. In this part of the course, we will also build a mini project where we will be building a hangman game in Python. By the end of this course, we will be able to perform Computer Vision tasks with deep learning. What You Will Learn Learn how to work with PyTorch Build intuition on convolution operation on images Implement gradient descent using AutoGrad Learn about LeNet architecture Create a mini-Python project game Understand how to use NumPy, Pandas, and Matplotlib libraries Audience Software developers, machine learning practitioners, data scientists, and anybody else interested in understanding PyTorch and deep learning should take this course. While a basic knowledge of Python would be beneficial, it is not a prerequisite as we will be covering the necessary fundamentals during the course. About The Author Manifold AI Learning: Manifold AI Learning℗ is an online academy with the goal to empower students with the knowledge and skills that can be directly applied to solving real-world problems in data science, machine learning, and artificial intelligence. With a curated curriculum and a hands-on guide, you will always be an industry-ready professional. 
588 |a Online resource; title from title details screen (O'Reilly, viewed April 11, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning) 
650 0 |a Machine learning. 
650 0 |a PyTorch (Computer program language) 
650 6 |a Apprentissage profond. 
650 6 |a Apprentissage automatique. 
650 7 |a Deep learning (Machine learning)  |2 fast 
650 7 |a Machine learning  |2 fast 
655 7 |a Instructional films  |2 fast 
655 7 |a Internet videos  |2 fast 
655 7 |a Nonfiction films  |2 fast 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
655 7 |a Films autres que de fiction.  |2 rvmgf 
655 7 |a Vidéos sur Internet.  |2 rvmgf 
710 2 |a Packt Publishing,  |e publisher. 
710 2 |a Manifold AI Learning (Firm),  |e presenter. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781837634286/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP