Cargando…

Computer vision on AWS build and deploy real-world CV solutions with Amazon Rekognition, Lookout for Vision, and SageMaker /

Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mullennex, Lauren (Autor), Bachmeier, Nate (Autor), Rao, Jay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2023.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Contributors
  • Table of Contents
  • Preface
  • Part 1: Introduction to CV on AWS and Amazon Rekognition
  • Chapter 1: Computer Vision Applications and AWS AI/ML Services Overview
  • Technical requirements
  • Understanding CV
  • CV architecture and applications
  • Data processing and feature engineering
  • Data labeling
  • Solving business challenges with CV
  • Contactless check-in and checkout
  • Video analysis
  • Content moderation
  • CV at the edge
  • Exploring AWS AI/ML services
  • AWS AI services
  • Amazon SageMaker
  • Setting up your AWS environment
  • Creating an Amazon SageMaker Jupyter notebook instance
  • Summary
  • Chapter 2: Interacting with Amazon Rekognition
  • Technical requirements
  • The Amazon Rekognition console
  • Using the Label detection demo
  • Examining the API request
  • Examining the API response
  • Other demos
  • Monitoring Amazon Rekognition
  • Quick recap
  • Detecting Labels using the API
  • Uploading the images to S3
  • Initializing the boto3 client
  • Detect the Labels
  • Using the Label information
  • Using bounding boxes
  • Quick recap
  • Cleanup
  • Summary
  • Chapter 3: Creating Custom Models with Amazon Rekognition Custom Labels
  • Technical requirements
  • Introducing Amazon Rekognition Custom Labels
  • Benefits of Amazon Rekognition Custom Labels
  • Creating a model using Rekognition Custom Labels
  • Deciding the model type based on your business goal
  • Creating a model
  • Improving the model
  • Starting your model
  • Analyzing an image
  • Stopping your model
  • Building a model to identify Packt's logo
  • Step 1
  • Collecting your images
  • Step 2
  • Creating a project
  • Step 3
  • Creating training and test datasets
  • Step 4
  • Adding labels to the project
  • Step 5
  • Drawing bounding boxes on your training and test datasets
  • Step 6
  • Training your model
  • Validating that the model works
  • Step 1
  • Starting your model
  • Step 2
  • Analyzing an image with your model
  • Step 3
  • Stopping your model
  • Summary
  • Part 2: Applying CV to Real-World Use Cases
  • Chapter 4: Using Identity Verification to Build a Contactless Hotel Check-In System
  • Technical requirements
  • Prerequisites
  • Creating the image bucket
  • Uploading the sample images
  • Creating the profile table
  • Introducing collections
  • Creating a collection
  • Describing a collection
  • Deleting a collection
  • Quick recap
  • Describing the user journeys
  • Registering a new user
  • Authenticating a user
  • Registering a new user with an ID card
  • Updating the user profile
  • Implementing the solution
  • Checking image quality
  • Indexing face information
  • Search existing faces
  • Quick recap
  • Supporting ID cards
  • Reading an ID card
  • Using the CompareFaces API
  • Quick recap
  • Guidance for identity verification on AWS
  • Solution overview
  • Deployment process
  • Cleanup
  • Summary