Cargando…

Computer vision on AWS build and deploy real-world CV solutions with Amazon Rekognition, Lookout for Vision, and SageMaker /

Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mullennex, Lauren (Autor), Bachmeier, Nate (Autor), Rao, Jay (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [S.l.] : PACKT PUBLISHING LIMITED, 2023.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1374423508
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230402s2023 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO 
019 |a 1374428142 
020 |a 9781803248202  |q (electronic bk.) 
020 |a 1803248203  |q (electronic bk.) 
020 |z 1801078688 
020 |z 9781801078689 
029 1 |a AU@  |b 000074213064 
035 |a (OCoLC)1374423508  |z (OCoLC)1374428142 
037 |a 9781801078689  |b O'Reilly Media 
050 4 |a TA1634 
082 0 4 |a 006.37  |2 23 
049 |a UAMI 
100 1 |a Mullennex, Lauren,  |e author. 
245 1 0 |a Computer vision on AWS  |h [electronic resource] :  |b build and deploy real-world CV solutions with Amazon Rekognition, Lookout for Vision, and SageMaker /  |c Lauren Mullennex, Nate Bachmeier, Jay Rao. 
250 |a 1st edition. 
260 |a [S.l.] :  |b PACKT PUBLISHING LIMITED,  |c 2023. 
300 |a 1 online resource 
520 |a Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial. 
505 0 |a Cover -- Title Page -- Copyright and Credits -- Contributors -- Table of Contents -- Preface -- Part 1: Introduction to CV on AWS and Amazon Rekognition -- Chapter 1: Computer Vision Applications and AWS AI/ML Services Overview -- Technical requirements -- Understanding CV -- CV architecture and applications -- Data processing and feature engineering -- Data labeling -- Solving business challenges with CV -- Contactless check-in and checkout -- Video analysis -- Content moderation -- CV at the edge -- Exploring AWS AI/ML services -- AWS AI services -- Amazon SageMaker 
505 8 |a Setting up your AWS environment -- Creating an Amazon SageMaker Jupyter notebook instance -- Summary -- Chapter 2: Interacting with Amazon Rekognition -- Technical requirements -- The Amazon Rekognition console -- Using the Label detection demo -- Examining the API request -- Examining the API response -- Other demos -- Monitoring Amazon Rekognition -- Quick recap -- Detecting Labels using the API -- Uploading the images to S3 -- Initializing the boto3 client -- Detect the Labels -- Using the Label information -- Using bounding boxes -- Quick recap -- Cleanup -- Summary 
505 8 |a Chapter 3: Creating Custom Models with Amazon Rekognition Custom Labels -- Technical requirements -- Introducing Amazon Rekognition Custom Labels -- Benefits of Amazon Rekognition Custom Labels -- Creating a model using Rekognition Custom Labels -- Deciding the model type based on your business goal -- Creating a model -- Improving the model -- Starting your model -- Analyzing an image -- Stopping your model -- Building a model to identify Packt's logo -- Step 1 -- Collecting your images -- Step 2 -- Creating a project -- Step 3 -- Creating training and test datasets 
505 8 |a Step 4 -- Adding labels to the project -- Step 5 -- Drawing bounding boxes on your training and test datasets -- Step 6 -- Training your model -- Validating that the model works -- Step 1 -- Starting your model -- Step 2 -- Analyzing an image with your model -- Step 3 -- Stopping your model -- Summary -- Part 2: Applying CV to Real-World Use Cases -- Chapter 4: Using Identity Verification to Build a Contactless Hotel Check-In System -- Technical requirements -- Prerequisites -- Creating the image bucket -- Uploading the sample images -- Creating the profile table -- Introducing collections 
505 8 |a Creating a collection -- Describing a collection -- Deleting a collection -- Quick recap -- Describing the user journeys -- Registering a new user -- Authenticating a user -- Registering a new user with an ID card -- Updating the user profile -- Implementing the solution -- Checking image quality -- Indexing face information -- Search existing faces -- Quick recap -- Supporting ID cards -- Reading an ID card -- Using the CompareFaces API -- Quick recap -- Guidance for identity verification on AWS -- Solution overview -- Deployment process -- Cleanup -- Summary 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Amazon Web Services. 
650 0 |a Computer vision  |x Computer programs. 
650 0 |a Cloud computing. 
650 0 |a Web services. 
650 0 |a Artificial intelligence. 
650 6 |a Vision par ordinateur  |x Logiciels. 
650 6 |a Infonuagique. 
650 6 |a Services Web. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Cloud computing  |2 fast 
650 7 |a Computer vision  |x Computer programs  |2 fast 
650 7 |a Web services  |2 fast 
655 0 |a Electronic books. 
700 1 |a Bachmeier, Nate,  |e author. 
700 1 |a Rao, Jay,  |e author. 
776 0 8 |i Print version:  |z 1801078688  |z 9781801078689  |w (OCoLC)1372132260 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781801078689/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 304803395 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30459467 
994 |a 92  |b IZTAP