Cargando…

Bayesian optimization : theory and practice using Python /

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Peng (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Chapter 1: Bayesian Optimization Overview
  • Chapter 2: Gaussian Process
  • Chapter 3: Bayesian Decision Theory and Expected Improvement
  • Chapter 4 : Gaussian Process Regression with GPyTorch
  • Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart
  • Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning
  • Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch.