|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
OR_on1374035348 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230328s2023 nyua o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d ORMDA
|d GW5XE
|d EBLCP
|d OCLCF
|d UKAHL
|d YDX
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781484290637
|q electronic book
|
020 |
|
|
|a 1484290631
|q electronic book
|
020 |
|
|
|z 1484290623
|
020 |
|
|
|z 9781484290620
|
024 |
7 |
|
|a 10.1007/978-1-4842-9063-7
|2 doi
|
029 |
1 |
|
|a AU@
|b 000073797663
|
035 |
|
|
|a (OCoLC)1374035348
|
037 |
|
|
|a 9781484290637
|b O'Reilly Media
|
050 |
|
4 |
|a QA279.5
|b .L58 2023
|
072 |
|
7 |
|a UYQM
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQM
|2 thema
|
082 |
0 |
4 |
|a 519.5/42
|2 23/eng/20230329
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Liu, Peng,
|e author.
|
245 |
1 |
0 |
|a Bayesian optimization :
|b theory and practice using Python /
|c Peng Liu.
|
264 |
|
1 |
|a New York, NY :
|b Apress,
|c 2023.
|
300 |
|
|
|a 1 online resource (xv, 234 pages) :
|b illustrations (black and white, and colour).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.
|
505 |
0 |
|
|a Chapter 1: Bayesian Optimization Overview -- Chapter 2: Gaussian Process -- Chapter 3: Bayesian Decision Theory and Expected Improvement -- Chapter 4 : Gaussian Process Regression with GPyTorch -- Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart -- Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning -- Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Bayesian statistical decision theory
|x Data processing.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Mathematical optimization.
|
650 |
|
6 |
|a Théorie de la décision bayésienne
|x Informatique.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Optimisation mathématique.
|
650 |
|
7 |
|a Bayesian statistical decision theory
|x Data processing
|2 fast
|
650 |
|
7 |
|a Mathematical optimization
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|c Original
|z 1484290623
|z 9781484290620
|w (OCoLC)1349562792
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484290637/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH41349392
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL7219539
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 304761902
|
994 |
|
|
|a 92
|b IZTAP
|