Cargando…

Bayesian optimization : theory and practice using Python /

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Peng (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Apress, 2023.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1374035348
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230328s2023 nyua o 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d ORMDA  |d GW5XE  |d EBLCP  |d OCLCF  |d UKAHL  |d YDX  |d OCLCQ  |d OCLCO 
020 |a 9781484290637  |q electronic book 
020 |a 1484290631  |q electronic book 
020 |z 1484290623 
020 |z 9781484290620 
024 7 |a 10.1007/978-1-4842-9063-7  |2 doi 
029 1 |a AU@  |b 000073797663 
035 |a (OCoLC)1374035348 
037 |a 9781484290637  |b O'Reilly Media 
050 4 |a QA279.5  |b .L58 2023 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 519.5/42  |2 23/eng/20230329 
049 |a UAMI 
100 1 |a Liu, Peng,  |e author. 
245 1 0 |a Bayesian optimization :  |b theory and practice using Python /  |c Peng Liu. 
264 1 |a New York, NY :  |b Apress,  |c 2023. 
300 |a 1 online resource (xv, 234 pages) :  |b illustrations (black and white, and colour). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization. 
505 0 |a Chapter 1: Bayesian Optimization Overview -- Chapter 2: Gaussian Process -- Chapter 3: Bayesian Decision Theory and Expected Improvement -- Chapter 4 : Gaussian Process Regression with GPyTorch -- Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart -- Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning -- Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bayesian statistical decision theory  |x Data processing. 
650 0 |a Python (Computer program language) 
650 0 |a Mathematical optimization. 
650 6 |a Théorie de la décision bayésienne  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a Optimisation mathématique. 
650 7 |a Bayesian statistical decision theory  |x Data processing  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |c Original  |z 1484290623  |z 9781484290620  |w (OCoLC)1349562792 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484290637/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41349392 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7219539 
938 |a YBP Library Services  |b YANK  |n 304761902 
994 |a 92  |b IZTAP