Cargando…

Manage AI bias instead of trying to eliminate it : to remediate the bias built into AI data, companies can take a three-step approach /

The negative effects of bias in artificial intelligence models’ underlying data has made headlines, and companies need to find ways to address it. But it’s impossible to completely abolish bias in AI data to equitably account for diverse populations — so instead, com...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Townson, Sian (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Cambridge, Massachusetts] : MIT Sloan Management Review, 2022.
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1370903644
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 230221s2023 mau o 000 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF 
024 8 |a 53863MIT64321 
035 |a (OCoLC)1370903644 
037 |a 53863MIT64321  |b O'Reilly Media 
050 4 |a Q335 
082 0 4 |a 006.3  |2 23/eng/20230221 
049 |a UAMI 
100 1 |a Townson, Sian,  |e author. 
245 1 0 |a Manage AI bias instead of trying to eliminate it :  |b to remediate the bias built into AI data, companies can take a three-step approach /  |c Sian Townson. 
246 3 |a Manage artifical intelligence bias instead of trying to eliminate it 
250 |a [First edition]. 
264 1 |a [Cambridge, Massachusetts] :  |b MIT Sloan Management Review,  |c 2022. 
300 |a 1 online resource (5 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Reprint 64321. 
520 |a The negative effects of bias in artificial intelligence models’ underlying data has made headlines, and companies need to find ways to address it. But it’s impossible to completely abolish bias in AI data to equitably account for diverse populations — so instead, companies should remediate it to deliberately compensate for unfairness. The author describes a three-step process that can yield positive results for leaders looking to reduce the impact of AI bias. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence  |x Industrial applications. 
650 7 |a Artificial intelligence  |x Industrial applications.  |2 fast  |0 (OCoLC)fst00817262 
856 4 0 |u https://learning.oreilly.com/library/view/~/53863MIT64321/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP