Cargando…

Explainable AI recipes : implement solutions to model explainability and interpretability with Python /

Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. The book starts with model interpretation for supervised learning linear models, which in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mishra, Pradeepta (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [California] : Apress, [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1370607273
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230220s2023 cau o 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d EBLCP  |d ORMDA  |d YDX  |d UKAHL  |d OCLCQ  |d OCLCF  |d OCLCO 
019 |a 1370391737  |a 1370494063  |a 1370913203 
020 |a 9781484290293  |q (electronic bk.) 
020 |a 1484290291  |q (electronic bk.) 
020 |z 1484290283 
020 |z 9781484290286 
024 7 |a 10.1007/978-1-4842-9029-3  |2 doi 
029 1 |a AU@  |b 000073405466 
035 |a (OCoLC)1370607273  |z (OCoLC)1370391737  |z (OCoLC)1370494063  |z (OCoLC)1370913203 
037 |a 9781484290293  |b O'Reilly Media 
050 4 |a Q335  |b .M57 2023 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23/eng/20230220 
049 |a UAMI 
100 1 |a Mishra, Pradeepta,  |e author. 
245 1 0 |a Explainable AI recipes :  |b implement solutions to model explainability and interpretability with Python /  |c Pradeepta Mishra. 
264 1 |a [California] :  |b Apress,  |c [2023] 
300 |a 1 online resource (253 pages) :  |b illustrations (black and white, and colour). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: Introduction to Explainability Library Installations -- Chapter 2: Linear Supervised Model Explainability -- Chapter 3: Non-Linear Supervised Learning Model Explainability -- Chapter 4: Ensemble Model for Supervised Learning Explainability -- Chapter 5: Explainability for Natural Language Modeling -- Chapter 6: Time Series Model Explainability -- Chapter 7: Deep Neural Network Model Explainability. 
520 |a Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution. After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses. You will: Create code snippets and explain machine learning models using Python Leverage deep learning models using the latest code with agile implementations Build, train, and explain neural network models designed to scale Understand the different variants of neural network models. 
500 |a Includes index. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 6 |a Intelligence artificielle. 
650 6 |a Python (Langage de programmation) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a MISHRA, PRADEEPTA.  |t EXPLAINABLE AI RECIPES.  |d [Place of publication not identified] : APRESS, 2023  |z 1484290283  |w (OCoLC)1346535007 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484290293/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41229950 
938 |a YBP Library Services  |b YANK  |n 304635900 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL7194580 
994 |a 92  |b IZTAP