Cargando…

APPLIED GEOSPATIAL DATA SCIENCE WITH PYTHON leverage geospatial data analysis and modeling to find unique solutions to environmental problems /

Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts Key Features Learn how to integrate spatial data and spatial thinking into tradit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jordan, David S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright and Credits
  • Contributors
  • Table of Contents
  • Preface
  • Part 1: The Essentials of Geospatial Data Science
  • Chapter 1: Introducing Geographic Information Systems and Geospatial Data Science
  • What is GIS?
  • What is data science?
  • Mathematics
  • Computer science
  • Industry and domain knowledge
  • Soft skills
  • What is geospatial data science?
  • Summary
  • Chapter 2: What Is Geospatial Data and Where Can I Find It?
  • Static and dynamic geospatial data
  • Geospatial file formats
  • Vector data
  • Raster data
  • Introducing geospatial databases and storage
  • PostgreSQL and PostGIS
  • ArcGIS geodatabase
  • Exploring open geospatial data assets
  • Human geography
  • Physical geography
  • Country- and area-specific data
  • Summary
  • Chapter 3: Working with Geographic and Projected Coordinate Systems
  • Technical requirements
  • Exploring geographic coordinate systems
  • Understanding GCS versions
  • Understanding projected coordinate systems
  • Common types of projected coordinate systems
  • Working with GCS and PCS in Python
  • PyProj
  • GeoPandas
  • Summary
  • Chapter 4: Exploring Geospatial Data Science Packages
  • Technical requirements
  • Packages for working with geospatial data
  • GeoPandas
  • GDAL
  • Shapely
  • Fiona
  • Rasterio
  • Packages enabling spatial analysis and modeling
  • PySAL
  • Packages for producing production-quality spatial visualizations
  • ipyLeaflet
  • Folium
  • geoplot
  • GeoViews
  • Datashader
  • Reviewing foundational data science packages
  • pandas
  • scikit-learn
  • Summary
  • Part 2: Exploratory Spatial Data Analysis
  • Chapter 5: Exploratory Data Visualization
  • Technical requirements
  • The fundamentals of ESDA
  • Example
  • New York City Airbnb listings
  • Conducting EDA
  • ESDA
  • Summary
  • Chapter 6: Hypothesis Testing and Spatial Randomness
  • Technical requirements
  • Constructing a spatial hypothesis test
  • Understanding spatial weights and spatial lags
  • Global spatial autocorrelation
  • Local spatial autocorrelation
  • Point pattern analysis
  • Ripley's alphabet functions
  • Summary
  • Chapter 7: Spatial Feature Engineering
  • Technical requirements
  • Defining spatial feature engineering
  • Performing a bit of geospatial magic
  • Engineering summary spatial features