Cargando…

APPLIED GEOSPATIAL DATA SCIENCE WITH PYTHON leverage geospatial data analysis and modeling to find unique solutions to environmental problems /

Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts Key Features Learn how to integrate spatial data and spatial thinking into tradit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jordan, David S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., [2023]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1369508190
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230217s2023 enk o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d EBLCP  |d OCLCQ  |d OCLCF  |d N$T  |d IEEEE  |d OCLCQ 
019 |a 1369643289  |a 1369657150 
020 |a 9781803240343  |q (electronic bk.) 
020 |a 1803240342  |q (electronic bk.) 
020 |z 1803238127 
020 |z 9781803238128 
029 1 |a AU@  |b 000073559021 
035 |a (OCoLC)1369508190  |z (OCoLC)1369643289  |z (OCoLC)1369657150 
037 |a 9781803238128  |b O'Reilly Media 
037 |a 10163701  |b IEEE 
050 4 |a G70.212 
082 0 4 |a 910.285  |2 23/eng/20230307 
049 |a UAMI 
100 1 |a Jordan, David S.,  |e author. 
245 1 0 |a APPLIED GEOSPATIAL DATA SCIENCE WITH PYTHON  |h [electronic resource] :  |b leverage geospatial data analysis and modeling to find unique solutions to environmental problems /  |c David S. Jordan. 
260 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c [2023] 
300 |a 1 online resource 
520 |a Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python The book includes colored images of important concepts Key Features Learn how to integrate spatial data and spatial thinking into traditional data science workflows Develop a spatial perspective and learn to avoid common pitfalls along the way Gain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expanded Book Description Data scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python. Throughout this book, you'll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You'll learn how to read, process, and manipulate spatial data effectively. With data in hand, you'll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you'll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries. By the end of the book, you'll be able to tackle random data, find meaningful correlations, and make geospatial data models. What you will learn Understand the fundamentals needed to work with geospatial data Transition from tabular to geo-enabled data in your workflows Develop an introductory portfolio of spatial data science work using Python Gain hands-on skills with case studies relevant to different industries Discover best practices focusing on geospatial data to bring a positive change in your environment Explore solving use cases, such as traveling salesperson and vehicle routing problems Who this book is for This book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You'll need to have a foundational knowledge of Python for data analysis and/or data science. 
505 0 |a Cover -- Title Page -- Copyright and Credits -- Contributors -- Table of Contents -- Preface -- Part 1: The Essentials of Geospatial Data Science -- Chapter 1: Introducing Geographic Information Systems and Geospatial Data Science -- What is GIS? -- What is data science? -- Mathematics -- Computer science -- Industry and domain knowledge -- Soft skills -- What is geospatial data science? -- Summary -- Chapter 2: What Is Geospatial Data and Where Can I Find It? -- Static and dynamic geospatial data -- Geospatial file formats -- Vector data -- Raster data 
505 8 |a Introducing geospatial databases and storage -- PostgreSQL and PostGIS -- ArcGIS geodatabase -- Exploring open geospatial data assets -- Human geography -- Physical geography -- Country- and area-specific data -- Summary -- Chapter 3: Working with Geographic and Projected Coordinate Systems -- Technical requirements -- Exploring geographic coordinate systems -- Understanding GCS versions -- Understanding projected coordinate systems -- Common types of projected coordinate systems -- Working with GCS and PCS in Python -- PyProj -- GeoPandas -- Summary 
505 8 |a Chapter 4: Exploring Geospatial Data Science Packages -- Technical requirements -- Packages for working with geospatial data -- GeoPandas -- GDAL -- Shapely -- Fiona -- Rasterio -- Packages enabling spatial analysis and modeling -- PySAL -- Packages for producing production-quality spatial visualizations -- ipyLeaflet -- Folium -- geoplot -- GeoViews -- Datashader -- Reviewing foundational data science packages -- pandas -- scikit-learn -- Summary -- Part 2: Exploratory Spatial Data Analysis -- Chapter 5: Exploratory Data Visualization -- Technical requirements -- The fundamentals of ESDA 
505 8 |a Example -- New York City Airbnb listings -- Conducting EDA -- ESDA -- Summary -- Chapter 6: Hypothesis Testing and Spatial Randomness -- Technical requirements -- Constructing a spatial hypothesis test -- Understanding spatial weights and spatial lags -- Global spatial autocorrelation -- Local spatial autocorrelation -- Point pattern analysis -- Ripley's alphabet functions -- Summary -- Chapter 7: Spatial Feature Engineering -- Technical requirements -- Defining spatial feature engineering -- Performing a bit of geospatial magic -- Engineering summary spatial features 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Geographic information systems  |x Data processing. 
650 0 |a Data mining. 
650 0 |a Python (Computer program language) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Geographic information systems  |x Data processing.  |2 fast  |0 (OCoLC)fst00940427 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |z 1803238127  |z 9781803238128  |w (OCoLC)1348139023 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803238128/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 304608153 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30365501 
938 |a EBSCOhost  |b EBSC  |n 3547011 
994 |a 92  |b IZTAP