Cargando…

Graph data science with Neo4j : learn how to use Neo4j 5 with Graph Data Science Library 2.0 and its Python driver for your project /

Neo4j, along with its Graph Data Science (GDS) library, is a complete solution to store, query, and analyze graph data. As graph databases are getting more popular among developers, data scientists are likely to face such databases in their career, making it an indispensable skill to work with graph...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Scifo, Estelle (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2023.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1369066002
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 230207s2023 enka ob 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP  |d UKAHL  |d OCLCQ  |d OCLCF  |d OCLCQ 
020 |z 9781804612743 
035 |a (OCoLC)1369066002 
037 |a 9781804612743  |b O'Reilly Media 
050 4 |a QA76.9.D32 
082 0 4 |a 005.75  |2 23/eng/20230207 
049 |a UAMI 
100 1 |a Scifo, Estelle,  |e author. 
245 1 0 |a Graph data science with Neo4j :  |b learn how to use Neo4j 5 with Graph Data Science Library 2.0 and its Python driver for your project /  |c Estelle Scifo. 
250 |a 1st edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2023. 
300 |a 1 online resource (288 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Neo4j, along with its Graph Data Science (GDS) library, is a complete solution to store, query, and analyze graph data. As graph databases are getting more popular among developers, data scientists are likely to face such databases in their career, making it an indispensable skill to work with graph algorithms for extracting context information and improving the overall model prediction performance. Data scientists working with Python will be able to put their knowledge to work with this practical guide to Neo4j and the GDS library that offers step-by-step explanations of essential concepts and practical instructions for implementing data science techniques on graph data using the latest Neo4j version 5 and its associated libraries. You'll start by querying Neo4j with Cypher and learn how to characterize graph datasets. As you get the hang of running graph algorithms on graph data stored into Neo4j, you'll understand the new and advanced capabilities of the GDS library that enable you to make predictions and write data science pipelines. Using the newly released GDSL Python driver, you'll be able to integrate graph algorithms into your ML pipeline. By the end of this book, you'll be able to take advantage of the relationships in your dataset to improve your current model and make other types of elaborate predictions. 
505 0 |a Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Part 1 -- Creating Graph Data in Neo4j -- Chapter 1: Introducing and Installing Neo4j -- Technical requirements -- What is a graph database? -- Databases -- Graph database -- Finding or creating a graph database -- A note about the graph dataset's format -- Modeling your data as a graph -- Neo4j in the graph databases landscape -- Neo4j ecosystem -- Setting up Neo4j -- Downloading and starting Neo4j Desktop -- Creating our first Neo4j database -- Creating a database in the cloud -- Neo4j Aura 
505 8 |a Inserting data into Neo4j with Cypher, the Neo4j query language -- Extracting data from Neo4j with Cypher pattern matching -- Summary -- Further reading -- Exercises -- Chapter 2: Importing Data into Neo4j to Build a Knowledge Graph -- Technical requirements -- Importing CSV data into Neo4j with Cypher -- Discovering the Netflix dataset -- Defining the graph schema -- Importing data -- Introducing the APOC library to deal with JSON data -- Browsing the dataset -- Getting to know and installing the APOC plugin -- Loading data -- Dealing with temporal data 
505 8 |a Discovering the Wikidata public knowledge graph -- Data format -- Query language -- SPARQL -- Enriching our graph with Wikidata information -- Loading data into Neo4j for one person -- Importing data for all people -- Dealing with spatial data in Neo4j -- Importing data in the cloud -- Summary -- Further reading -- Exercises -- Part 2 -- Exploring and Characterizing Graph Data with Neo4j -- Chapter 3: Characterizing a Graph Dataset -- Technical requirements -- Characterizing a graph from its node and edge properties -- Link direction -- Link weight -- Node type 
505 8 |a Computing the graph degree distribution -- Definition of a node's degree -- Computing the node degree with Cypher -- Visualizing the degree distribution with NeoDash -- Installing and using the Neo4j Python driver -- Counting node labels and relationship types in Python -- Building the degree distribution of a graph -- Improved degree distribution -- Learning about other characterizing metrics -- Triangle count -- Clustering coefficient -- Summary -- Further reading -- Exercises -- Chapter 4: Using Graph Algorithms to Characterize a Graph Dataset -- Technical requirements 
505 8 |a Digging into the Neo4j GDS library -- GDS content -- Installing the GDS library with Neo4j Desktop -- GDS project workflow -- Projecting a graph for use by GDS -- Native projections -- Cypher projections -- Computing a node's degree with GDS -- stream mode -- The YIELD keyword -- write mode -- mutate mode -- Algorithm configuration -- Other centrality metrics -- Understanding a graph's structure by looking for communities -- Number of components -- Modularity and the Louvain algorithm -- Summary -- Further reading -- Chapter 5: Visualizing Graph Data -- Technical requirements 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Non-relational databases. 
650 0 |a Graphic methods. 
650 7 |a Graphic methods.  |2 fast  |0 (OCoLC)fst00946645 
650 7 |a Non-relational databases.  |2 fast  |0 (OCoLC)fst01896579 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804612743/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH41170600 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30364126 
994 |a 92  |b IZTAP