Cargando…

Deep learning and XAI techniques for anomaly detection : integrating the theory and practice of deep anomaly explainability /

Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll hel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Simon, Cher (Autor)
Otros Autores: Barr, Jeff (Jeffrey Scott) (writer of foreword.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2023.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007i 4500
001 OR_on1369031260
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 230207s2023 enka o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |z 180461775X 
020 |z 9781804617755 
035 |a (OCoLC)1369031260 
037 |a 9781804617755  |b O'Reilly Media 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23/eng/20230207 
049 |a UAMI 
100 1 |a Simon, Cher,  |e author. 
245 1 0 |a Deep learning and XAI techniques for anomaly detection :  |b integrating the theory and practice of deep anomaly explainability /  |c Cher Simon ; foreword by Jeff Barr. 
250 |a 1st edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2023. 
300 |a 1 online resource (130 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. 
588 |a Description based on print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning  |x Industrial applications. 
650 0 |a Anomaly detection (Computer security) 
650 6 |a Apprentissage automatique  |x Applications industrielles. 
650 6 |a Détection d'anomalies (Sécurité informatique) 
650 7 |a Anomaly detection (Computer security)  |2 fast 
650 7 |a Machine learning  |x Industrial applications  |2 fast 
700 1 |a Barr, Jeff  |q (Jeffrey Scott),  |e writer of foreword. 
776 0 8 |i Print version:  |a SIMON, CHER.  |t DEEP LEARNING AND XAI TECHNIQUES FOR ANOMALY DETECTION.  |d [Place of publication not identified] : PACKT PUBLISHING LIMITED, 2023  |z 180461775X  |w (OCoLC)1353278507 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781804617755/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP