Cargando…

AZURE MACHINE LEARNING ENGINEERING : deploy, fine -tune and optimize ml models using microsoft azure /

Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key Features Automate complete machine learning solutions using Microsoft Azure Understand how to productionize machine learning models Get to grips with monitoring, MLOps, deep learning, distrib...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fakhraee, Sina
Otros Autores: Balakreshnan, Balamurugan, Masanz, Megan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] PACKT Publishing Limited, 2022.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007 4500
001 OR_on1359604044
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 230123s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d ORMDA  |d OCLCF  |d IEEEE  |d OCLCO 
020 |a 9781803241685  |q (electronic bk.) 
020 |a 1803241683  |q (electronic bk.) 
020 |z 1803239301 
020 |z 9781803239309 
035 |a (OCoLC)1359604044 
037 |a 9781803239309  |b O'Reilly Media 
037 |a 10162224  |b IEEE 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23/eng/20230124 
049 |a UAMI 
100 1 |a Fakhraee, Sina. 
245 1 0 |a AZURE MACHINE LEARNING ENGINEERING :  |b deploy, fine -tune and optimize ml models using microsoft azure /  |c Sina Fakhraee, Balamurugan Balakreshnan, Megan Masanz. 
260 |a [Place of publication not identified]  |b PACKT Publishing Limited,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key Features Automate complete machine learning solutions using Microsoft Azure Understand how to productionize machine learning models Get to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learning Book DescriptionData scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You’ll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide. Throughout the book, you’ll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You’ll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework. By the end of this Azure Machine Learning book, you’ll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios. What you will learn Train ML models in the Azure Machine Learning service Build end-to-end ML pipelines Host ML models on real-time scoring endpoints Mitigate bias in ML models Get the hang of using an MLOps framework to productionize models Simplify ML model explainability using the Azure Machine Learning service and Azure Interpret Who this book is for Machine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered. 
505 0 |a Table of Contents Introducing Azure Machine Learning Working with Data in AMLS Training Machine Learning Models in AMLS Tuning Your Models with AMLS Azure Automated Machine Learning Deploying ML Models for Real-Time Inferencing Deploying ML Models for Batch Scoring Responsible AI Productionizing Your Workload with MLOps Using Deep Learning in Azure Machine Learning Using Distributed Training in AMLS. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Microsoft Azure (Computing platform) 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
700 1 |a Balakreshnan, Balamurugan. 
700 1 |a Masanz, Megan. 
776 0 8 |i Print version:  |z 1803239301  |z 9781803239309  |w (OCoLC)1352963231 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781803239309/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 19089264 
994 |a 92  |b IZTAP