Cargando…

Fundamentals of neural networks.

Learning can be supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, and convolutional neural networks have been applied to fields including computer vision, speech recogni...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, [2022]
Edición:[First edition].
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007i 4500
001 OR_on1357157702
003 OCoLC
005 20231017213018.0
006 m o c
007 vz czazuu
007 cr cnannnuuuuu
008 230110s2022 xx 398 o vleng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |a 9781837639519  |q (electronic video) 
020 |a 1837639515  |q (electronic video) 
029 1 |a AU@  |b 000073289719 
035 |a (OCoLC)1357157702 
037 |a 9781837639519  |b O'Reilly Media 
050 4 |a Q325.73 
082 0 4 |a 006.3/1  |2 23/eng/20230110 
049 |a UAMI 
245 0 0 |a Fundamentals of neural networks. 
250 |a [First edition]. 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c [2022] 
300 |a 1 online resource (1 video file (6 hr., 38 min.)) :  |b sound, color. 
306 |a 063800 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file  |2 rdaft 
380 |a Instructional films  |2 lcgft 
511 0 |a Yiqiao Yin, presenter. 
500 |a "Published in December 2022." 
520 |a Learning can be supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, material inspection, and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. This course covers the following three sections: (1) Neural Networks, (2) Convolutional Neural Networks (CNN), and (3) Recurrent Neural Networks (RNN). You will learn about logistic regression and linear regression and know the purpose of neural networks. You will also understand forward and backward propagation as well as the cross-entropy function. Furthermore, you will explore image data, convolutional operation, and residual networks. In the final section of the course, you will understand the use of RNN, Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM). You will also have code blocks and notebooks to help you understand the topics covered in the course. By the end of this course, you will have a hands-on understanding of Neural Networks in detail. What You Will Learn Learn about linear and logistic regression in ANN Learn about cross-entropy between two probability distributions Understand convolution operation which scans inputs with respect to their dimensions Understand VGG16, a convolutional neural network model Understand why to use recurrent neural network Understand Long short-term memory (LSTM) Audience This course can be taken by a beginner level audience that intends to obtain an in-depth overview of Artificial Intelligence, Deep Learning, and three major types of neural networks: Artificial Neural Networks, Convolutional Neural Networks, and Recurrent Neural Networks. There is no prior coding or programming experience required. This course assumes you have your own laptop, and the code will be done using Colab. About The Author Yiqiao Yin: Yiqiao Yin was a Ph.D. student in statistics at Columbia University from September of 2020 to December 2021. He has a B.A. in mathematics and an M.S. in finance from the University of Rochester. He also has a wide range of research interests in representation learning: Feature Learning, Deep Learning, Computer Vision, and (NLP). Yiqiao Yin is a senior data scientist at an S&P 500 company LabCorp, developing AI-driven solutions for drug diagnostics and development. He has held professional positions as an enterprise-level data scientist at EURO STOXX 50 company Bayer, a quantitative researcher at AQR working on alternative quantitative strategies to portfolio management and factor-based trading, and equity trader at T3 Trading on Wall Street. 
588 |a Online resource; title from title details screen (O'Reilly, viewed January 10, 2023). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Deep learning (Machine learning) 
650 6 |a Apprentissage profond. 
650 7 |a Deep learning (Machine learning)  |2 fast 
655 7 |a Instructional films  |2 fast 
655 7 |a Internet videos  |2 fast 
655 7 |a Nonfiction films  |2 fast 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Nonfiction films.  |2 lcgft 
655 7 |a Internet videos.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
655 7 |a Films autres que de fiction.  |2 rvmgf 
655 7 |a Vidéos sur Internet.  |2 rvmgf 
700 1 |a Yin, Yiqiao,  |e presenter. 
710 2 |a Packt Publishing,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781837639519/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP