Practicing Trustworthy Machine Learning : consistent, transparent, and fair AI pipelines /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Pruksachatkun, Yada, Mcateer, Matthew (Autor), Mjumdar, Subho (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastopol, CA :
O'Reilly Media,
2022.
|
Edición: | First edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Practical machine learning : innovations in recommendation /
por: Dunning, Ted, 1956-
Publicado: (2014) -
Machine learning bookcamp /
por: Grigoriev, Alexey
Publicado: (2021) -
Applied machine learning explainability techniques : make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more /
por: Bhattacharya, Aditya
Publicado: (2022) -
AI and Machine Learning for on-Device Development : a programmer's guide /
por: Moroney, Laurence
Publicado: (2021) -
An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
por: Hall, Patrick, et al.
Publicado: (2019)